

RESISTANCE DES MATERIAUX DE BASE

Par

Nouredine BOURAHLA

Professeur Université Sâad Dahleb de Blida

PREFACE

Pourquoi?

Encore un livre de résistance de matériaux! Oui car, d'une part comme discipline de base de plusieurs branches de technologie, la résistance des matériaux évolue (RDM) constamment en fonction des développements dans le domaine théorique de la mécanique des solides, le domaine expérimental des matériaux (technologie des matériaux) ainsi que l'aspect numérique imposé par le progrès rapide de l'informatique, et d'autre part, elle doit répondre aussi à un besoin exigé par une ingénierie de plus en plus performante.

Quoi?

Cet ouvrage comporte les notions fondamentales de la RDM. Chaque chapitre contient un résumé consistant du cours empli d'illustrations et d'applications suivi d'une série d'exercices de degré de difficulté variée. Certains exercices ont été intégralement reproduits des nombreux ouvrages de la RDM et d'autres ont été l'oeuvre propre de l'auteur. Des sujets d'examens terminent cet ouvrage avec des propositions de solutions détaillées.

Comment?

L'enseignement de cette matière, comme le témoigne la plupart des programmes et supports de cours, traitent surtout les techniques de calcul de résistance de rigidité ou de stabilité des éléments des structures au détriment d'autres aspects aussi important comme l'optimisation et la conception. La résistance des matériaux est réduite donc à l'enseignement des méthodes de calcul de structures, au moment où la majorité des étudiants, techniciens et ingenieurs utilisent des logiciels et programmes de calcul pour l'analyse des structures.

Cet ouvrage se distingue par une présentation pragmatique du sujet, qui accentue l'aspect pratique de chaque notion en mettant en evidence ses usages dans la conception des éléments et des structures.

Pour qui?

Un support aux étudiants débutants le cours de la RDM.

Un moyen offert aux enseignants et formateurs pour une meilleurs efficacité de l'enseignement de cette matière.

Merci ...

Nombreux sont ceux qui ont apporté leur aide à la réalisation de cet ouvrage en particulier R. Bahar et C. Cherfa. Qu'ils veuillent bien trouver ici un signe de reconnaissance.

L'auteur

TABLE DES MATIERES

Preface			.i
Table des	s ma	itieres	ii
Chapitre	:1	INTRODUCTION ET GENERALITES	1
	1.1	Introductions et nypotneses	. 1
	1.2	Unites	. 2
	1.5	Convention de signe des axes	. 3
	1.4	1 4 1 Appul	.4 1
		1.4.1 Apput simple	. 4 1
		1.4.2 Appul double	. 4 1
	15	Forces	. - 5
	1.5	1.5.1 Composition des forces	. 5
		1.5.1 Composition des forces	. 5
	16	Application	. 0
	Exe	ercices	. 9
	2.1		• •
Chapitre	: 2	CARACTERISTIQUES GEOMETRIQUE DES FORMES	5
I	2.1	Généralités	. 11
	2.2	Caractéristiques cartésiennes	. 11
		2.2.1 Centre de gravité	. 11
		2.2.2 Moment de statique	. 12
		2.2.3 Moment quadratique	. 13
		2.2.4 Moment d'inertie polaire	. 14
		2.2.5 Produit d'inertie (moment d'inertie centrifuge)	. 15
	2.3	Formules de transformation des moments d'inertie	. 15
		2.3.1 Translation d'axes	. 15
		2.3.2 Rotation d'axes	. 17
	2.4	Moments d'inertie principaux	. 17
	2.5	Représentation géometrique des moments d'inertie	. 18
	2.6	Application	. 19
	Exe	ercices	. 21
	2		
Chapitre	: 3	EIUDE DES EFFORIS INTERNES	22
	3.1	2 1 1 Effort normal	. 23
		3.1.1 EHOR normal	. 24
		3.1.2 Effort tranchant	. 24
		3.1.5 Moment de torsion	. 24
	27	5.1.4 Moment de torsion	. 24
	3.2	Diagrammes des efforts et des moments	. 25
	5.5	3 3 1 Les zones des efforts internes dans une poutre	. 23 25
		3.3.2 Relations différentielles entre les charges et les efforts	. 23 26
		3.3.3 Construction des diagrammes des efforts	. 20
		3 3 4 Tracé des diagrammes pour portiques isostatiques	28
		5.5.1 Trace des diagrammes pour portiques isosaurques	. 20

	3.3.5 Tracé des diagrammes pour poutres curvilignes	. 28
3.	4 Applications	.28
	3.4.1 Poutre simple rectiligne	28
	3.4.2 Portique isostatique simple	.30
	3 4 3 Poutre simple curviligne	31
Е	xercices	.35
Chapitre: 4	ETATS DE CONTRAINTES ET DE DEFORMATIONS	
4.	1 Introduction	. 38
4.	2 Notion de contrainte	. 38
4.	3 Contraintes dans une section normale	. 39
	4.3.1 Equations de transformation de l'état de contrainte linéaire.	. 40
	4.3.2 Equations de transformation de l'état de contrainte plan	. 40
4.	4 Etude graphique des contraintes (cercle de Mohr)	. 44
4.	5 Relations entre les contraintes et les déformations relatives	. 45
	4.5.1 Loi de Hooke généralisée	. 45
4.	6 Equations de transformation des déformations	. 47
4.	7 Mesure des déformations (extensiometrie electrique)	. 48
4.	8 Applications	. 49
E	kercices	. 51
Chapitre: 5	CRITERE DE RESISTANCE	
5.	1 Introduction	. 54
5.	2 Courbe de contrainte-déformation	. 54
5.	3 Contrainte admissible	. 56
5.	4 Théories fondamentales de la résistance	. 57
	5.4.1 Critère des contraintes normales maximales	. 57
	5.4.2 Critère de déformation linéaire relative maximale	. 57
	5.4.3 Critère des contraintes tangentielles maximales	. 58
	5.4.4 Critère de l'énergie potentielle spécifique dela	
	modification de la forme	. 58
	5.4.5 Critère de Coulomb-Mohr	. 58
Chapitre: (TRACTION ET COMPRESSION	50
6.	1 Introduction	. 39
6.	2 Deformation des barres en traction et compression	. 59
6.	3 Sollicitations dues a la variation de temperature	. 60
6.	4 Systemes de barres isostatiques	.61
6.	5 Systemes de barres hyperstatiques	. 62
T	6.5.1 Application	.63
E	kercices	. 65
Chapitre: 7	FLEXION	
7.	1 Généralités	. 68
7.	2 Contraintes normales en flexion	. 69
7.	3 Calcul de résistance en flexion	. 71
7.	4 Applications	. 71

7.5 Contraintes tangentielles en flexion 73 7.5.1 Poutre à section rectangulaire 75

7.5.2 Poutre à section circulaire	75
7.5.3 Poutre à section triangulaire	
7.6 Calcul de résistance en flexion simple	
7.7 Application	
Exercices	

Chapitre: 8 CISAILLEMENT

8.1	Généralités	80
8.2	Calcul des contraintes de cisaillement	80
8.3	Etat de cisaillement pur	81
8.4	Calcul de résistance en cisaillement pur	81
8.5	Application	82
Exe	proces	84

Chapitre: 9 TORSION

9.1 Généralités	85
9.2 Contraintes et déformations d'une barre cylindrique	85
9.3 Torsion des barres de section rectangulaires	87
9.4 Calcul de résistance à la torsion	88
9.5 Application	88
Exercices	

Chapitre: 10 SOLLICITATIONS COMPOSEES

10.2 Flexion déviée	93
10.2.1 Calcul de résistance à la flexion déviée	95
10.2.2 Application 1	95
10.2.3 Application 2	96
10.3 Flexion composée	97
10.3.1 Flexion composée avec traction ou compression	97
10.3.2 Traction et compression excentrées	98
10.3.3 Vérification à la résistance	100
10.3.4 Application	100
Exercices	103

Chapitre: 11 STABILITE DES BARRES ELASTIQUES COMPRIMEES (FLAMBEMENT)

11.1 Généralités	105
11.2 Equilibre elastique (stable et instable)	105
11.3 La charge critique d'une barre comprimée	106
11.3.1 Longueur effective (Influence des conditions de fixation	ı) 108
11.3.2 Contrainte critique de flambement	109
11.4 Calcul à la stabilité	111
11.5 La forme rationnelle pour les sections transversales des barres	
comprimées	112
11.6 Applications	113
Exercices	116

Chapitre: 12 SYSTEMES EN TREILLIS

12.1 Généralités et définitions	118
12.2 Etude cinématique des systems en treillis	119
12.3 Etude des systèmes en treillis	121
12.3.1 Méthode des sections	121
12.3.2 Méthode des noeuds	121
12.3.3 Applications	122
12.3.4 Méthode graphique de "Cremona"	123
12.3.5 Application	124
Exercices	126

Chapitre: 13 DEFORMATIONS FLECHIES

13.1 Généralités	
13.2 Equations différentielles de la ligne élastique	
13.3 Méthode d'intégration directe de la ligne élastique	
13.3.1 Applications	
13.4 Méthode de la poutre conjuguée (fictive)	
13.4.1 Applications	134
13.5 Méthode des paramètres initiaux	
13.5.1 Applications	137
13.6 Superposition des déformations	
Exercices	139

Chapitre: 14 POUTRES HYPERSTATIQUES

14.1 Introduction	141
14.2 Méthodes de résolution	141
14.2.1 Méthode des paramètres initiaux	
14.2.2 Méthode de la poutre fictive	
14.3 Poutres droites continues hyperstatiques	
14.3.1 Application	
Exercices	
lèmes d'evamens	150

Problèmes d'examens	
Solutions	
Bibliographie	

Chapitre 1

INTRODUCTION ET GENERALITES

1.1 DEFINITIONS ET HYPOTHESES

La résistance des matériaux ou la mécanique des matériaux est une branche de la mécanique appliquée servant à étudier le comportement des corps solides sous l'action des différents types de charges. La résistance des matériaux traite non seulement les méthodes d'ingénieurs employées pour le calcul de la capacité des structures et de ses éléments à supporter les charges qui leurs sont appliquées sans se détruire, ou se déformer appréciablement, mais aussi à présenter les critères de base pour la conception des structures (forme, dimensions,...) et l'utilisation des matériaux dans les meilleurs conditions de sécurité et d'économie.

La résistance des matériaux est basée sur les résultats théoriques de la mécanique et les propriétés des matériaux qui ne peuvent être disponibles qu'à travers les résultats des travaux expérimentaux comme le témoigne l'histoire du développement de la résistance des matériaux qui constitue une combinaison fascinante de la théorie et l'expérience [1].

Les limites de la résistance des matériaux sont celles imposées par ses hypothèses mêmes. Les disciplines connexes telles que la théorie d'élasticité, de la plasticité ou la méthode des éléments finis se libèrent de certaines de ces contraintes.

Les principales hypothèses de la résistance des matériaux sont les suivantes:

L'homogénéité, l'isotropie et la continuité du matériau: On suppose que le matériau possède les mêmes propriétés élastiques en tous les points du corps, dans toutes les directions en un point quelconque du corps, et que le matériau est assimilé à un milieu continu.

L'élasticité et la linéarité du matériau: On suppose admet qu'en chaque point contraintes et déformations sont proportionnelles et qu'après déformation, l'élément revient à son état initiale.

2 RESISTANCE DES MATERIAUX DE BASE

La petitesse des déformations: les déformations dues aux charges sont négligeables par rapport aux dimensions des éléments et la configuration géométrique reste inchangée.

Hypothèse des sections planes (hypothèse de Navier-Bernoulli): Les sections droites restent planes et normales à la fibre moyenne au cours de la déformation.

Hypothèse de Saint Venant: Tous les efforts qui interviennent dans la théorie peuvent être schématisés par leur torseur résultant.

Ces hypothèses simplificatrices conduisent à des solutions approchées qui permettent en général une bonne approximation du comportement des structures soumises à différents types de charges.

Les notions de la résistance des matériaux étudiées dans cet ouvrage et les relations entre elles sont schématisées dans la Fig. 1.1. L'action extérieure est caractérisée par les différents types de forces connues agissant sur une structure ou un élément de structure défini par ses caractéristiques géométriques et mécaniques. Pour une structure isostatique, les efforts internes sont déterminés directement en utilisant les équations de la statique. Par contre pour une structure hyperstatique, il est nécessaire de faire intervenir les déformations de la structure pour déterminer les réactions. L'effort interne qui agit au niveau d'une section d'un élément de structure peut-être décomposé en effort normal de traction ou de compression, moment fléchissant, moment de torsion, effort tranchant ou une combinaison de ces sollicitations. A partir de ces efforts internes, nous pouvons obtenir des informations sur la répartition des contraintes et déformations dans la section droite. Les valeurs extrêmes de ces contraintes et déformations sont les mesures de base des critères de résistance, de rigidité ou de stabilité pour vérifier ou dimensionner les éléments des structures.

1.2 UNITES

Les unités de mesure utilisées sont principalement celles du système d'unités international (SI); pour des raisons de commodité le système d'unités technique (MKS) est parfois utilisé

Unité	SI	MKS
Longueur (le mètre)	m	m
Masse (le kilogramme)	kg	kgf = 10 N
Temps (la seconde)	S	S
Force (le Newton)	N, kN	$t = 10^3 \text{ kgf} = 10^4 \text{ N}$
Contrainte	N/mm ²	$1 \text{ bar} = \text{kgf/cm}^2 = 0.1 \text{ N/mm}^2$
Travail (Joule)	J = N.m	kgf.m = 10 J

Fig. 1.1

1.3 CONVENTION DE SIGNE DES AXES

Généralement on utilise le système Cartésien ou rectangulaire pour toutes les structures. Cependant, pour les structures en arc, le système polaire s'avère plus pratique. Le premier ayant les axes OX, OY et OZ mutuellement perpendiculaire. Les sens positifs des ces axes obéissent à la règle de la main droite. Comme indiqué ci-dessous (Fig. 1.2), on choisit les sens positifs de deux axes X et Y par exemple, le sens positif de l'axe Z est suivant la direction d'un vis tournant de l'axe X vers l'axe Y.

Fig. 1.2

1.4 REACTION D'APPUI (Efforts de liaison)

Une structure est reliée au monde extérieur par un certain nombre de liaisons. Une liaison impose des conditions cinématiques en un point. Pour maintenir ces liaisons, il faut exercer des efforts de liaison qui sont des inconnues du problème. Les liaisons dans le plan sont de 3 sortes:

1.4.1 Appui simple

Ce type d'appui matérialisé par la Fig. 1.3, laisse à la structure toute liberté de pivoter autour de O (extrémité de la poutre) et de se déplacer perpendiculairement à la droite joignant les points de contact. Si on néglige les frottements, la réaction d'appui a la direction de la droite précitée, et introduit une seule inconnue dans l'étude de la poutre.

Fig. 1.3

1.4.2 Appui double (articulation)

Matérialisé par une rotule (Fig. 1.4) cet appui autorise les rotations d'une extrémité de la poutre ou d'un des éléments constituant la structure. La direction de la réaction R est inconnue, mais la ligne d'action passe par le centre de l'articulation.

L'articulation introduit 2 inconnues, par exemple les projections sur deux directions du plan moyen.

1.4.3 Encastrement

L'encastrement schématisé sur la Fig. 1.5 interdit tout déplacement de la section droite de l'appui. Sa réaction est une force de densité variable répartie sur toute l'étendue de la section. En vertu du principe de Saint Venant, ces forces peuvent être remplacées par leur résultante générale R, et leur moment M rapportés au centre de gravité G. Ce type d'appui introduit donc 3 inconnues, les deux projections de R sur deux axes du plan moyen et l'intensité du moment M qui est perpendiculaire au plan moyen.

Fig. 1.4

Fig. 1.5

1.5 FORCES

La force est une grandeur dirigée (Fig. 1.6). Elle est donc représentée par un vecteur et définie par:

- Son point d'application
- Sa direction ou support
- Son sens
- Son intensité

Dans un repère Cartésien une force F est définie par une intensité F et des angles α , β et γ que \vec{F} forme avec les axes X, Y et Z. Les projections de \vec{F} suivant ces axes sont les composantes de cette force. Comme le montre la Fig. 1.7, $F_X = F \cos \alpha$, $F_y = F \cos \beta$ et $F_Z = F \cos \gamma$. Ces composantes qui déterminent complètement l'intensité et la direction de \vec{F} sont souvent représentées sous la forme matricielle par:

$$\vec{F} = \begin{bmatrix} F_x \\ F_y \\ F_z \end{bmatrix}$$

Cette matrice colonne est appelée le vecteur force.

1.5.1 Composition des forces

Soient
$$\overrightarrow{F}_1$$
, \overrightarrow{F}_2 , ..., \overrightarrow{F}_n définies par:
 $\overrightarrow{F}_1 = \begin{bmatrix} F_{x1} \\ F_{y1} \\ F_{z1} \end{bmatrix}$, $\overrightarrow{F}_2 = \begin{bmatrix} F_{x2} \\ F_{y2} \\ F_{z2} \end{bmatrix}$, $\overrightarrow{F}_n = \begin{bmatrix} F_{xn} \\ F_{yn} \\ F_{zn} \end{bmatrix}$

Où $F_{x1} = F_1 \cos \alpha_1$, $F_{v1} = F_1 \cos \beta_1$, $F_{z1} = F_1 \cos \gamma_1$, $F_{x2} = F_2 \cos \alpha_2$... etc.

module F A point d'application

Fig. 1.7

Le vecteur $\stackrel{\,\,{}_\circ}{F}$ résultant est la somme de ces n vecteurs forces:

$$\vec{F} = \vec{F}_{1} + \vec{F}_{2} + \dots + \vec{F}_{n} = \begin{bmatrix} F_{x1} \\ F_{y1} \\ F_{z1} \end{bmatrix} + \begin{bmatrix} F_{x2} \\ F_{y2} \\ F_{z2} \end{bmatrix} + \dots + \begin{bmatrix} F_{xn} \\ F_{yn} \\ F_{zn} \end{bmatrix} = \begin{bmatrix} F_{x1} + F_{x2} + \dots + F_{xn} \acute{y} \\ F_{y1} + F_{y2} + \dots + F_{yn} \\ F_{z1} + F_{z2} + \dots + F_{zn} \end{bmatrix} = \begin{bmatrix} \sum F_{xi} \\ \sum F_{yi} \\ \sum F_{zi} \end{bmatrix}$$

Ζ

1.5.2 Moment des forces

Le moment de F_1 par rapport à un axe, X par exemple, est la somme des moments de ses composantes par rapport à cet axe.

Si le point d'application de F_1 est défini par (x_1, y_1, z_1) (Fig. 1.8) on a:

Le moment de F₁ par rapport à l'axe X

$$M_x = F_{z1}y_1 - F_{v1}z_1$$

Le moment de F1 par rapport à l'axe Y

$$M_v = F_{x1}z_1 - F_{z1}x_1$$

Le moment de F1 par rapport à l'axe Z

 $M_z = F_{v1}x_1 - F_{x1}y_1$

Sous sa forme vectorielle le moment M₁ s'écrit:

$$M_{1} = \begin{bmatrix} M_{x1} \\ M_{y1} \\ M_{z1} \end{bmatrix} = \begin{bmatrix} F_{z1}y_{1} - F_{y1}z_{1} \\ F_{x1}z_{1} - F_{z1}x_{1} \\ F_{y1}x_{1} - F_{x1}y_{1} \end{bmatrix}$$

La somme de n moments $M_1, M_2, ..., M_n$ est :

$$M = M_1 + M_2 + \ldots + M_n = \begin{bmatrix} M_{x1} \\ M_{y1} \\ M_{z1} \end{bmatrix} + \ldots = \begin{bmatrix} \sum M_{xi} \\ \sum M_{y1} \\ \sum M_{zi} \end{bmatrix}$$

1.6 APPLICATIONS

Exemple 1

Soit un repère orthonormé XOY dans le plan. Déterminer la force résultante et le moment résultant par rapport à O des forces F_1 et F_2 .

Solution:

On détermine les composantes de la force résultante:

Fig. 1.9

$$F_{x} = \sum F_{xi} = 100\cos(45) + 50\cos(30)$$

$$F_{x} = 114.N$$

$$F_{y} = \sum F_{yi} = 100\sin(45) - 50\sin(30)$$

$$F_{y} = 45.7N$$

Le moment résultant par rapport à O:

$$M_{/o} = \sum F_{xi} Y_i + F_{yi} X_i$$

$$M_{/o} = 2 \times 50 \sin(30) - 1 \times 50 \cos(30) = 6.7 \text{ N.m}$$

Exemple 2

Quel est le module minimal de F_2 et l'angle correspondant pour que le moment résultant par rapport à O soit nul?

Solution:

Le moment résultant par rapport à O :

$$M_{\prime o} = \sum F_{xi} Y_i + F_{yi} X_i$$

Fig. 1.10

8 RESISTANCE DES MATERIAUX DE BASE

En supposant que le sens positif du moment est le sens trigonométrique, pour $\theta > \pi$ le moment résultant s'écrit:

$$M_{/o} = 2 \times F_2 \sin \theta - 1 \times 5 \cos 30 + 2 \times 5 \sin 30 = 0$$
$$\Rightarrow F_2 = \frac{5(\cos 30 - 2 \sin 30)}{2 \sin \theta}$$

Pour que le module de F₂ soit minimal, il faut que sin θ soit maximal:

 $\sin\theta = 1 \Rightarrow \theta = \pi/2 + k\pi$

et comme θ est supposé > π

$$\Rightarrow \theta = 3\pi/2$$

d'où $F_2 = 0.33$ N

EXERCICES / chapitre 1

1.1 Déterminer les composantes F_X et F_y de chacune des trois forces F_1 , F_2 , et F_3 .

Trouver la valeur de la résultante de ces forces et l'angle entre cette résultante et l'axe yy'.

 $F_1 = 100 \text{ N}, \alpha = 36.86^{\circ}$ $F_2 = 200 \text{ N}, \alpha = -110^{\circ}$ $F_3 = 300 \text{ N}, \alpha = 125^{\circ}$

✓80 N, 60 N, -68.4 N, -187.9 -172.1 N, 245.7 N, 199.1 N, -36.3°

1.2 Déterminer le module minimal et l'angle correspondant d'une force appliquée au point (0,1) pour que le torseur des moments par rapport au point O soit nul.

✓ 13.23 N, $\theta = \pi$ (parallèle à l'axe ox)

Fig. E1.2

1.3 Soit une structure à 3 dimensions soumise au chargement représenté par le torseur force défini dans un repère cartésien, dont l'origine coïncide avec le centre de gravité de la structure, par:

$$F_{1} = 10 \text{ t}, \alpha = 120^{\circ}, \beta = 45^{\circ}, \theta = 30^{\circ},$$

$$A_{1} (1,0,0)$$

$$F_{2} = 20 \text{ t}, \alpha = -110^{\circ}, \beta = 45^{\circ}, \theta = 30^{\circ},$$

$$A_{2} (0,1,0)$$

$$F_{3} = 8t, \alpha = 60^{\circ}, \beta = 30^{\circ}, \theta = 90^{\circ},$$

$$A_{3} (0,0,1)$$

 α , β , θ étant les angles que F_i forme respectivement avec les axes xx', yy', et zz', et A_i les points d'application des forces.

Déterminer les composantes du vecteur force résultant et moment résultant.

$$\checkmark \quad R = (-7.84, 28.1, 25.96) \\ M = (10.4, -4.66, 13.91)$$

1.4 Déterminer les composantes de la réaction résultante des forces agissant sur le système de poutres rigides de la Fig. E1.4, et le moment résultant de toutes les forces par rapport au point O.

$$R = (7.07, 32.07) kN,$$

 $M_{/0} = 17.07 kN.m$

Source: www.almohandiss.com

١

Fig. E1.4

1.5 Calculer la résultante des forces et du moment du système de la figure E1.5 et déterminer les points d'intersection de la ligne d'action de la résultante avec AB et CB.

 \checkmark R = 9.16 kN; 0.47 m de B sur AB et 1.35 m de B sur CB

Fig.E1.5

1.6 Calculer le moment additionnel à la base d'un poteau de 4.5 m de hauteur, que provoque une déviation α de 2°.

✓ 113.07 kNm

Fig.E1.6

Chapitre 2

CARACTERISTIQUES GEOMETRIQUES **DES FORMES**

2.1 GENERALITES

La variété des formes des sections transversales des éléments utilisés dans les constructions n'est pas un fait du hasard. Dans la plupart des cas ces formes ont été développées pour répondre à des critères de résistance, de rigidité ou de stabilité. Ce chapitre étudie les principales caractéristiques des sections planes, leurs méthodes de calcul et leurs propriétés vis à vis les différents cas de sollicitations.

Z∔

2.2 CARACTERISTIQUES CARTESIENNES

2.2.1 Centre de gravité

On appelle centre de gravité d'une section le point à travers lequel si on applique une force, elle résulte en une pression uniforme sur toute la section. Les coordonnées du centre de gravité $G(Y_G, Z_G)$ d'une section homogène (S) (Fig. 2.1) sont données par les relations.

$$Y_G = \frac{1}{S} \iint_{S} y ds$$

$$Z_G = \frac{1}{S} \iint_{s} z ds \tag{2-1}$$

Fig. 2.1

y et z étant les coordonnées de l'aire élémentaire ds.

12 RESISTANCE DES MATERIAUX DE BASE

Ces intégrales peuvent être évaluées analytiquement si le contour de la section est exprimé par des expressions mathématiques simples. Si par contre le contour est une courbe irrégulière, on procède dans ce cas par les méthodes numériques. La méthode la plus simple consiste à discrétiser la section en éléments de surface s_i et faire la sommation comme suit:

Les expressions (2-2) tendent vers les solutions exactes quand les s_i couvrent complètement l'aire de la section.

Fig. 2.2

У3

2.2.2 Moments statiques

On considère l'aire d'une section (S) dans le plan défini par le système d'axe YOZ (Fig. 2.1). On appelle les moments statiques de l'aire (S) par rapport aux axes OY et OZ les quantités:

$$S_{y} = \iint_{S} z ds$$

$$S_{z} = \iint_{S} y ds$$
(2-3)

Par analogie avec le moment d'une force par rapport à un axe quelconque, le moment statique de l'aire d'une section par rapport à un axe situé dans son plan est égal au produit de la surface de la section par la distance de son centre de gravité à l'axe considéré.

En utilisant les équations (2-1), (2-3) deviennent:

$$S_y = S \cdot Z_G$$

$$S_z = S \cdot Y_G$$
(2-4)

Pour les surfaces complexes discrétisées en n aires simples, les moments statiques par rapport aux axes Oy et Oz seront respectivement égaux à:

$$S_{y} = \sum_{i=1}^{n} s_{i} z_{i}$$

$$S_{z} = \sum_{i=1}^{n} s_{i} y_{i}$$
(2-5)

Remarque: Le moment statique d'une surface par rapport à un axe passant par son centre de gravité est nul.

2.2.3 Moments quadratiques (moments d'inertie des sections)

On appelle moment quadratique l'intégrale des produits des aires élémentaires par le carré de leurs distances à partir de l'axe considéré, ainsi, les moments d'inertie d'une surface (S) quelconque par rapport à OY et OZ sont les suivants:

$$I_{Y} = \iint_{S} z^{2} ds$$

$$I_{Z} = \iint_{S} y^{2} ds$$
(2-6)

Les moments d'inertie par rapport aux axes passant par le centre de gravité de la section sont des moments centraux.

Le moment d'inertie de la section représente la capacité de la section à s'opposer à la déformation latérale, comme le montre l'exemple d'une feuille

reposant sur deux appuis dont la déformation sous son poids propre est nettement plus importante que quand elle est pliée en forme de U, car le moment d'inertie Iz de la forme en U est plus grand que celui de la section rectangulaire.

)

14 RESISTANCE DES MATERIAUX DE BASE

En utilisant les équations générales (2-6), on peut déterminer les moments

(2-7)

(2-8)

d'inertie d'une section quelconque quand on puisse exprimer les termes y, z et ds par des expressions analytiques. Pour une section triangulaire par exemple on a:

$$b(z) = \frac{B}{H}(H-z)$$

$$ds = b(z)dz$$

(2-9)

$$\Rightarrow I_Y = \iint_s z^2 ds = \frac{B}{H} \int_0^H z^2 (H-z) dz = \frac{BH^3}{12}$$

2.2.4 Moment d'inertie polaire

On appelle moment d'inertie polaire d'une surface (S) par rapport à un point donné (pôle O) ^z l'intégrale des produits des aires élémentaires par le carré de leurs distances r à partir du pôle. Il représente la capacité de la section à s'opposer aux déformations angulaires sous l'effet de la torsion.

Fig. 2.5

$$I_{p} = \iint_{s} r^{2} ds = \iint_{s} (z^{2} + y^{2}) ds = I_{Z} + I_{Y}$$
(2-10)

De l'équation (2-10), il en résulte que le moment d'inertie polaire par rapport à un point est la somme des moments d'inertie par rapport à deux axes orthogonaux passant par ce point.

Exemple : moment polaire d'un cercle:

$$I_{o} = \iint_{s} r^{2} ds \qquad (2-1)$$

$$I_o = \int_{0}^{d/2} 2\pi r^3 dr = \frac{\pi d^4}{32}$$

Fig. 2.6

2.2.5 Produit d'inertie (moment d'inertie centrifuge)

On appelle moment produit, l'intégrale des produits des propriétés des aires élémentaires par leurs distances comptées à partir des axes de coordonnées z, y :

$$I_{YZ} = \iint_{S} yzds \tag{2-13}$$

Remarques:

- Les moments d'inertie quadratiques et polaire sont toujours positifs

- Selon la disposition des axes, I_{TY} peut être positif, négatif ou nul.

- En chaque point d'une aire plane, il existe deux axes orthogonaux par rapport auxquels le produit d'inertie est nul ($I_{yZ} = 0$). Les deux axes ainsi définis sont appelés *axes principaux d'inertie*.

- Les axes sont principaux quand l'un des axes au moins constitue un axe de symétrie de la section. En effet, en raison de symétrie le produit d'inertie est nul par rapport à cet axe qui est donc une direction principale, la seconde étant nécessairement orthogonale.

2.3 FORMULE DE TRANSFORMATION DES MOMENTS D'INERTIE

Les moments d'inertie d'une section varient selon la disposition des axes par rapport auxquels ces moments sont calculés. Deux types de transformations seront étudiées : translation et rotation d'axes. La variation des moments d'inertie par rapport à un système d'axes quelconques, est déterminé à l'aide d'une combinaison de deux transformations partant d'un système d'axe central.

2.3.1 Translation d'axes

Les formules définies ci-dessous permettent la détermination des moments d'inertie par rapport à des axes Y_1 , Z_1 parallèles à des axes centraux Y, Z dont les moments sont supposés connus.

Fig. 2.7

$$I_{Z} = \iint_{s} y^{2} ds \; ; \; I_{y} = \iint_{s} z^{2} ds \; ;$$
$$I_{yz} = \iint_{s} yz ds \qquad (2-14)$$

Les moments par rapport à Y_1, Z_1 :

$$I_{z1} = \iint_{s} y_{1}^{2} ds \; ; \; I_{y_{1}} = \iint_{s} z_{1}^{2} ds \; ; \; I_{z_{1}y_{1}} = \iint_{s} y_{1}z_{1} ds \tag{2-15}$$

La translation des axes est exprimée par :

$$y_1 = y + a$$
 $z_1 = z + b$ (2-16)

16 RESISTANCE DES MATERIAUX DE BASE

En substituant y_1 et z_1 par leurs valeurs dans l'équation (2-15)

On obtient :

$$I_{z1} = \iint_{s} (y+a)^2 \, ds \tag{2-17}$$

$$= \iint_{s} (y^{2} + 2ay + a^{2}) ds$$
 (2-18)

$$= \iint_{s} y^{2} ds + 2a \iint_{s} y ds + a^{2} \iint_{s} ds$$
(2-19)

Comme les moments statiques de l'aire par rapport aux axes centraux sont nuls, le terme

$$2a = \iint_{s} y ds = 0 \tag{2-20}$$

et

$$\iint_{s} y^2 ds = I_z \tag{2-21}$$

$$a^2 \iint_{S} ds = a^2 S \tag{2-22}$$

Par conséquent:

$$I_{z1} = I_z + a^2 S (2-23)$$

On aurait de même:

$$I_{y1} = I_y + b^2 S (2-24)$$

$$I_{y_1 z_1} = I_{y z} + abS$$
(2-25)

D'où le théorème d'Huygens:

1- "Le moment d'inertie d'une surface par rapport à un axe quelconque est égal au moment d'inertie de cette surface par rapport à l'axe parallèle passant par le centre de gravité, augmenté du produit de l'aire par le carré de la distance mutuelle des deux axes".

2- "Le moment d'inertie centrifuge par rapport à un système d'axes orthogonal est égal au moment d'inertie centrifuge par rapport au système d'axes centraux parallèles aux axes donnés plus le produit de l'aire de la section par les coordonnées de son centre de gravité dans le nouveau système d'axes.

2.3.2 Rotation d'axes

Les moments et produits d'inertie sont supposés connus dans le système d'axes OYZ. Les moments et produits d'inertie par rapport au système d'axes OY_1Z_1 obtenu par une rotation α des axes initiaux sont donnés par:

$$I_{y_1} = \frac{I_y + I_z}{2} + \frac{I_y - I_z}{2} \cos 2\alpha - I_{yz} \sin 2\alpha$$
(2-26)

$$I_{z_1} = \frac{I_y + I_z}{2} - \frac{I_y - I_z}{2} \cos 2\alpha + I_{yz} \sin 2\alpha$$
(2-27)

$$I_{y_1 z_1} = \frac{I_y - I_z}{2} \sin 2\alpha + I_{yz} \cos 2\alpha$$
(2-28)

En ajoutant les équations (2-26) et (2-27) terme à terme, on obtient :

$$I_{y} + I_{z} = I_{y_{1}} + I_{z_{1}}$$

$$\Rightarrow I_{p} = I_{p_{1}}$$
(2-29)

2.4 MOMENTS D'INERTIE PRINCIPAUX

Les équations de transformations expriment les variations des moments d'inertie en fonction de l'angle de rotation α . Les valeurs maximales et minimales sont particulièrement recherchées. Ils correspondent à un moment d'inertie centrifuge $I_{YZ} = 0$.

On obtient ainsi l'orientation des axes principaux:

$$tg2\alpha_0 = -\frac{2I_{yz}}{I_y - I_z}$$
(2-30)

Les valeurs des moments d'inertie principaux peuvent être obtenues à partir des formules générales si l'on y pose $\alpha = \alpha_0$.

$$I_{1} = \frac{I_{y} + I_{z}}{2} + \sqrt{\left(\frac{I_{y} - I_{z}}{2}\right)^{2} + I_{yz}^{2}}$$
(2-31)

18 RESISTANCE DES MATERIAUX DE BASE

$$I_{2} = \frac{I_{y} + I_{z}}{2} - \sqrt{\left(\frac{I_{y} - I_{z}}{2}\right)^{2} + I_{yz}^{2}}$$
(2-32)

2.5 REPRESENTATION GEOMETRIQUE DES MOMENTS D'INERTIE (CERCLE DE MOHR)

Problème direct :

 I_y, I_z, I_{yz} connus ; I_1, I_2, α inconnus.

- On choisi un système de coordonnées orthogonal O $I_{y,z}$, I_{yz} et une échelle adéquate

- On construit A (I_V, I_{VZ}) et B $(I_Z, -I_{VZ})$

- On relie AB (diamètre qui coupe l'axe O $I_{V,Z}$ en C).

- Le rayon du cercle est: AC = BC =
$$\sqrt{\left(\frac{I_y - I_z}{2}\right)^2 I_{yz}^2}$$

- On trace le cercle qui coupe les abscisses en A' et B'

- On mesure les distances OA' et OB' et on obtient I_1 et I_2

- On mesure l'angle ACA' = $2\alpha_0$

Problème indirect:

 I_y, I_z, I_{yz} connus ; I_1, I_2, α inconnus.

- On choisit le système de coordonnées O $I_{y,z}$, I_{yz}
- On porte sur l'axe des abscisses, en échelle requise, OA' et OB'
- On localise le centre du cercle C: B'C = A'C = $\frac{1}{2}(I_1 I_2)$.

- On trace le cercle de rayon A'C.

- On détermine le point A d'un angle A'CA = $2\alpha_0$ et le point B diamétralement opposé

- On obtient les valeurs de I_y, I_z, I_{yz} en projetant A et B sur les axes.

Fig. 2.9

2.6 APPLICATION

Déterminer les moments d'inertie principaux et centraux de la section en forme de L ci-dessous. 1 cm

Les coordonnées du centre de gravité sont:

$$Z_{G} = \frac{\sum S_{i}Z_{i}}{\sum S_{i}} = \frac{10 \times 5 + 9 \times 0.5}{19} = 2.87 \text{ cm}$$
$$Y_{G} = \frac{\sum S_{i}Y_{i}}{\sum S_{i}} = \frac{10 \times 0.5 + 9 \times 5.5}{19} = 2.87 \text{ cm}$$

Les distances entre les centres de gravité locaux et le centre de gravité de la section sont:

$$a_1 = z_1 - Z_G = 2.13 \text{ cm}$$
 $a_2 = z_2 - Z_G = -2.37 \text{ cm}$
 $b_1 = y_1 - Y_G = -2.37 \text{ cm}$ $b_2 = y_2 - Y_G = 2.63 \text{ cm}$

20 RESISTANCE DES MATERIAUX DE BASE

Les moments d'inertie centraux par rapport aux axes parallèles à OY et OZ:

$$I_z = \sum I_{zi} + S_i a_i^2 = 83.33 + 0.75 + 10 \times (2.13)^2 + 9 \times (-2.37)^2 = 180 \text{ cm}^4$$

$$I_y = \sum I_{yi} + S_i b_i^2 = 0.83 + 60.75 + 10 \times (-2.37)^2 + 9 \times (2.63)^2 = 180 \text{ cm}^4$$

$$I_{yz} = \sum I_{yzi} + S_i a_i b_i = 0 + 0 + 10(2.13)(-2.37) + 9(-2.37)(2.63) = -106.6 \text{ cm}^4$$

Les moments d'inertie centraux principaux sont

$$I_{1,2} = \frac{I_y + I_z}{2} \pm \sqrt{\left(\frac{I_y - I_z}{2}\right)^2 + I_{yz}^2} = 180 \pm 106.6 \text{ cm}^4$$
$$I_1 = 286.6 \text{ mm}^4 \text{ et } I_2 = 73.4 \text{ cm}^4$$

L'orientation des axes principaux:

$$\operatorname{tg} 2\alpha_0 = -\frac{2I_{yz}}{I_y - I_z} = \infty \qquad \Rightarrow 2\alpha_0 = \frac{\pi}{2} \Rightarrow \alpha_0 = \frac{\pi}{4}$$

EXERCICES / chapitre 2

2.1 Déterminer les moments d'inertie principaux et centraux des sections de la Fig. E2.1

a)2.813×10⁷mm⁴,1.25×10⁷mm⁴ b)2.145×10⁷mm⁴,0.82×10⁷mm⁴ c)1.37×10⁷mm⁴,0.802×10⁷mm⁴ d)2.43×10⁷mm⁴,1.687×10⁷mm⁴ e) 3.7315 r⁴, 1.726 r⁴

2.2 Calculer les moments d'inertie principaux d'une section rectangulaire $3 a \times a$ par rapport aux axes ayant un coin de la section comme origine.

✓ 9.583a⁴, 0.411a⁴

2.3 Une section transversale d'une poutre est symétrique par rapport à un segment de droite AB. Les longueurs des lignes moyennes de dix bandes de même largeurs et normales à AB sont respectivement:

16.0, 28.0, 32.0, 32.8, 32.0, 31.4, 25.2, 20.6, 15.0 et 6.6 mm. La hauteur AB est 75 mm.

Calculer le moment d'inertie de cette aire par rapport à l'axe central perpendiculaire à AB.

2.4 Calculer les moments d'inertie centraux I_z , I_y et I_{yz} d'une section de cornière à ailes inégales représentée sur la Fig. E2.4.

Déterminer graphiquement l'orientation des axes principaux et les moments d'inertie par rapport à ces axes.

✓ 1.085×10⁷mm⁴; 2.48×10⁶ mm⁴;
 -2.98 × 10⁶ mm⁴; 17.72°;
 1.18×10⁷mm⁴; 1.53 × 10⁶ mm⁴.

Fig. E2.4

 $^{1 5.869 \}times 10^5 \text{ mm}^4$

2.5 Déterminer l'aire (S), le moment statique (S_Z), le centre de gravité (Y_G, Z_G) et le moment d'inertie (I_Z) d'une section droite dont la ligne moyenne est constituée par un arc de parabole d'ouverture 2a, et de flèche *f* et dont l'épaisseur *e* mesurée verticalement est constante (Fig. E2.5).

✓ S = 2ae, S_Z = 2aef/3; Z_G=0; Y_G = -f/3; I_Z = 2aef²/5

2.6 Déterminer la position (angle α) d'une poutre, dont la section droite est une cornière en S ayant un centre de symétrie en O (Fig. E2.6), pour que la flèche sous un chargement perpendiculaire à l'axe orienté par α , soit minimale. Calculer le moment d'inertie par rapport à l'axe parallèle passant par le centre de gravité de la section.

$$\checkmark$$
 $\alpha = -21^{\circ} 21'; I_{\pi'} = 49.16 \ cm^4$

2.7 Tracer le cercle de Mohr d'une section circulaire de diamètre D et expliquer la particularité de ce cas. Donner deux autres formes de sections présentant les mêmes caractéristiques.

✓ Si une section admet trois axes de symétrie ou plus, alors tous les axes centraux sont des axes principaux et tous les moments d'inerties par rapport à ces axes sont égaux.

Exemples de sections: carrée, triangle équilatéral.

Fig. E2.5

Fig. E2.6

Chapitre 3 EFFORTS INTERNES

3.1 GENERALITES

On appelle forces extérieures ou charges les forces appliquées connues sur une structure donnée. Suivant le cas, ces charges peuvent-être réparties avec une densité donnée de volume (poids propre d'une structure) ou concentrées en un certain nombre de points. Dans cette catégorie de forces extérieures figurent aussi les réactions d'appuis.

Sous l'effet de ces charges, les forces entre les particules d'un corps (élément) en équilibre varient. En Résistance des Matériaux, on appelle souvent cette variation des forces *efforts internes*.

Afin de faciliter l'étude des efforts exercés sur chaque particule matérielle on considère une section transversale d'un élément soumis à une sollicitation (Fig. 3.1). Tout comme n'importe quel système de forces, les efforts intérieurs répartis sur toute la section peuvent être rapportés à un point (par exemple le centre de

gravité de la section), et de ce fait on distingue le vecteur force $F(N, T_z, T_v)$ et le vecteur moment $M(M_x, M_v,$ M_{z}) résultant des forces intérieures dans la section. Il convient d'adopter les dénominations suivantes pour les forces et moments agissant dans une section.

Fig. 3.1

24 RESISTANCE DES MATERIAUX DE BASE

3.1.1 Effort Normal

La composante N de la résultante F représente la somme des projections de toutes les forces intérieures agissant suivant la normale de la section (ou suivant l'axe longitudinal de l'élément). L'effort normal provoque une déformation longitudinale de l'élément. N est considéré positif s'il s'agit d'une traction et négatif dans le cas contraire.

3.1.2 Efforts tranchants

Les forces transversales T_z , et T_y sont les sommes des projections de toutes les forces intérieures dans la section sur les axes centraux principaux de cette dernière. Ces efforts tranchants provoquent le cisaillement des bords de la section respectivement dans la direction des axes Z et Y. Le sens de T sur le plan est positif par convention quand il tend à faire tourner un élément entre deux sections dans le sens des aiguilles d'une montre comme indiqué sur la Fig. 3.2.

Fig. 3.2

3.1.3 Moments Fléchissants

Les composantes M_y , et M_z du vecteur moment résultant représentent les sommes des moments de toutes les forces intérieures dans la section, par rapport aux axes d'inertie principaux de cette dernière Y et Z respectivement. La Fig. 3.3 indique le sens positif des moments dans le plan qui par convention tend les fibres inférieures et comprime les fibres supérieures de la section.

Fig. 3.3

3.1.4 Moment de torsion

le moment de torsion M_X (ou M_t) est la somme des moments de toutes les forces intérieures dans la section par rapport à l'axe de la barre X. Le moment de torsion est positif lorsqu'il tend à tourner la section dans le sens inverse des aiguilles d'une montre (sens trigonométrique) en regardant la section du côté de la normale extérieure (Fig. 3.4)

Fig. 3.4

3.2 METHODE DES SECTIONS

Pour déterminer les forces intérieures qui apparaissent dans un élément soumis à une sollicitation, on se sert, en résistance des matériaux, de la méthode des sections.

Cette méthode est basée sur le fait que si un élément est en équilibre, sous l'action des forces extérieures, alors n'importe quelle partie de cet élément sous l'action des forces qui lui sont appliquées, est équilibré par un système de forces intérieures agissant dans la section.

On considère l'élément AB plan, soumis à l'action d'un système de forces extérieures (Fig. 3.5). Pour calculer les efforts et moments dans n'importe quelle

section, on coupe à l'endroit voulu l'élément AB en deux parties. Les valeurs numériques des efforts N, T, et M sont égaux aux sommes algébriques des projections et des moments des forces extérieures agissant sur une des parties (gauche ou droite) de l'élément sectionné, généralement sur celle où les projections et moments se calculent plus facilement.

3.3 DIAGRAMMES DES EFFORTS ET DES MOMENTS

En général, les efforts et moments agissant dans différentes sections varient le long de la poutre. Entre autres les valeurs maximales et minimales de ces efforts et moments sont d'une grande importance pour la sécurité de la poutre, on s'intéresse donc à tracer des courbes qui montrent comment changent les efforts et les moments d'une section à une autre, on appelle ces courbes les diagrammes des efforts et des moments.

On se limite dans cette section à l'étude des diagrammes des efforts et des moments dans les poutres à deux dimensions (plan XOY), ce qui réduit le nombre des efforts et des moments à trois, à savoir un effort normal N, un effort tranchant T_V , et un moment fléchissant M_Z .

3.3.1 Les zones des efforts internes dans une poutre

La variations d'un effort ou moment dans une zone (ou tronçon) d'une poutre est caractérisé par une même loi mathématique. En pratique l'extrémité d'une zone est imposée par l'extrémité de la poutre (extrémité libre appuis de rive ou intermédiaire), changement brutal de la charge, ou le changement brutal de la direction de l'axe de la poutre (Fig. 3.6).

26 RESISTANCE DES MATERIAUX DE BASE

Fig. 3.6

3.3.2 Relations différentielles entre les charges et les efforts

Ils existent des relations différentielles entres les forces extérieures et intérieures et qui constituent la base de la méthode directe pour la détermination des efforts internes.

Ν

Μ

Т

Pour déterminer ces relations on considère un cas de charge arbitraire d'un système de sollicitations donné dans un plan (Fig. 3.7) avec:

 q_X : intensité de la charge extérieure selon l'axe X

selon l'axe X q_y : intensité de la charge extérieure selon l'axe Y

dx

q_x

M+dM

T+dT

N+dN

La relation entre l'intensité de la charge q_x est l'effort normal est obtenue par l'équation d'équilibre d'un élément dx et peut être exprimée par:

$$N - q_X(x)dx - N - dN = 0$$

 $\Rightarrow dN/dx = -q_x(x)$

Entre l'intensité q_y , l'effort tranchant T et le moment fléchissant M qui agissent dans une certaine section, existent les relations différentielles suivantes:

$$T - q_y(x)dx - T - dT = 0$$

$$\Rightarrow dT/dx = -q_y(x)$$

$$M + Tdx - q_y(x)dx^2/2 - M - dM = 0$$

en négligeant le terme quadratique en dx² on obtient:

$$dM/dx = T$$

où
 $d^2M/dx^2 = -q_V$

3.3.3 Construction des diagrammes des efforts internes d'une poutre

Pour pouvoir tracer les diagrammes, il est indispensable de connaître toutes les forces extérieures y compris les réactions qui doivent être préalablement déterminées.

Pour déterminer les réactions d'une poutre isostatique (efforts de liaison), il faut écrire les conditions d'équilibre (la loi fondamentale de la statique).

Pour une poutre articulée isostatique, aux trois équations fondamentales de la statique s'ajoute une équation supplémentaire: en effet par rapport au centre de l'articulation, la somme des moments créés par toutes les forces situées d'un côté de cette dernière est nulle

Le tracé des diagrammes des efforts et des moments peut être fait à l'aide des équations analytiques ou par la méthode directe.

La méthode analytique consiste à trouver les expressions des efforts et moment pour chaque zone en fonction de l'abscisse x de la ligne moyenne de la poutre. Ces expressions peuvent être établies par les équations d'équilibre de toutes les forces (y compris les réactions des appuis) appliquées à gauche ou à droite de la section considérée. Une fois que ces expressions sont déterminées, on peut alors tracer leurs diagrammes.

La méthode directe est très rapide généralement utilisée dans les cas de chargements simples. Elle consiste à déterminer les valeurs numériques des efforts intérieurs aux extrémités de chaque tronçon. Ces points sont joints par des lignes ou courbes dont les caractéristiques sont déterminées sur la base des relations différentielles entre les efforts intérieurs et les forces extérieures citées ci-dessous.

a) Sur les tronçons où il n'y a pas de charge répartie, le diagramme des T est délimité par des droites parallèles à la base tandis que le diagramme des M l'est, dans le cas le plus général, par des droites obliques.

b) Sur les tronçons où la poutre supporte une charge répartie, le diagramme des T est délimité par des droites obliques tandis que celui des M l'est par des paraboles carrées. Quand on trace le diagramme des M du côté des fibres tendues, l'incurvation de la parabole est dirigée dans le sens contraire de la charge q_v .

c) Les maximums et minimums des M coïncident avec les sections où T=0.

d) Dans les sections où les charges concentrées sont appliquées à la poutre, le diagramme des T est caractérisé par des passages brusques aux niveaux de ces charges, celui des M, il y aura des brisures dont la pointe sera dirigée dans le sens de la ligne d'action de la force.

e) Dans les sections où des moments concentrés sont appliqués à la poutre, le diagramme des moments sera marqué par des passages brusques d'une valeur proportionnelle à ces moments tandis que sur le diagramme des T, il n' y aura aucune modification.

28 RESISTANCE DES MATERIAUX DE BASE

3.3.4 Tracé des diagrammes pour des portiques isostatiques

On appelle *portique* les systèmes de poutres reliées entre elles par des noeuds rigides (Fig. 3.8). Il est convenu d'appeler les *poteaux* ou *montants* les éléments verticaux ou inclinés d'un portique, tandis que ceux longitudinaux, *poutres* ou *traverses*.

Ces assemblages trouvent une large application dans le domaine du génie civil. Ils sont très utilisés comme systèmes de base dans les constructions telles que les bâtiments et les hangars. Généralement les portiques sont des systèmes hyperstatiques, mais on se limitera ici à l'étude des portiques isostatiques.

Les règles de construction des diagrammes sont celles utilisées dans le cas de poutres simples, car chaque élément du portique est considéré ainsi. Les

conventions de signe préalablement établies restent valables: les ordonnées positives des N et des T sont portés de façon à être dirigées vers le coté extérieur, les diagrammes des moments positifs sont tracés du coté des fibres tendues.

3.3.5 Tracé des diagrammes pour poutres curvilignes (arcs)

Pour des raisons esthétiques ou de résistance, on utilise des éléments structurels ayant des formes curvilignes (ou en arcs). Dans cette section, on suppose que l'axe de la poutre curviligne représente un arc de cercle. Pour déterminer les expressions analytiques des efforts internes de ces éléments, on utilise la méthode des sections et on écrit les équations d'équilibre pour une section donnée en projetant les forces suivant l'axe parallèle à l'effort normal N et l'axe perpendiculaire à ce dernier. La somme des moments de toutes les forces est calculée par rapport au centre de gravité de la section pour l'expression de M. On note aussi qu' il est commode d'utiliser un système de coordonnées polaires pour parcourir la ligne moyenne de l'élément.

3.4 APPLICATIONS

3.4.1 Exemple 1: poutre simple rectiligne

Soit une poutre simplement appuyée (Fig. 3.9), soumise aux cas de charges suivants:

Une force P concentrée à mi-travée.

La force P est uniformément répartie sur toute la longueur, soit q = P/L.

La force P est triangulairement répartie sur la longueur, soit q = 2P/L.

Tracer les diagrammes des efforts internes et comparer les moments maximaux.
P _

a) cas d'une force concentrée à mi-travée

Détermination des réactions:

$$\Sigma M_{A} = 0 \Rightarrow V_{B} = 0.5 P$$

$$\Sigma F^{\uparrow} = 0 \Rightarrow V_{A} = 0.5 P$$
Expressions des efforts internes:
$$P/2$$

$$P/2$$

$$N = 0$$

$$T - 0.5P = 0 \Rightarrow T = 0.5P$$

$$M - 0.5P x = 0 \Rightarrow M = 0.5P x$$

$$M(0) = 0, \quad M(L/2) = PL/4$$

$$Tronçon II: L/2 \le x \le L$$

$$N = 0$$

$$T + P - 0.5P = 0 \Rightarrow T = -0.5P$$

M - 0.5P x + P (x - L/2) = 0
$$\Rightarrow M = 0.5P x - P (x - L/2)$$

M(0) = 0, M(L) = 0, M_{max} = M(L/2) = PL/4 = 0.25 PL

b) Cas d'une charge uniformément répartie q = P/L

Détermination de réactions:

$$\Sigma M_{A} = \Rightarrow V_{B}L - (P/L)L(L/2) = 0$$

$$\Rightarrow V_{B} = 0.5P$$

$$\Sigma F \uparrow = 0 \Rightarrow V_{A} + V_{B} - (P/L)L = 0$$

$$\Rightarrow V_{A} = 0.5P$$

Expressions des efforts internes:

N = 0
T - 0.5P + (P/L) x = 0
⇒ T = 0.5P - (P/L)x
T(0) = 0.5P, T(L) = -0.5P
et T(x) = 0 ⇒ x = L/2
M - 0.5Px + (P/L)
$$x^{2}/2 = 0$$

30 RESISTANCE DES MATERIAUX DE BASE

$$\Rightarrow$$
 M = 0.5Px - (P/2L) x²
M(0) = 0, M(L) = 0,
M_{max} = M(L/2) = PL/8 = 0.125 PL

c) Cas d'une charge triangulairement répartie q = 2P/L

Détermination de réactions:

$$\Sigma M_{A} = \Rightarrow V_{B}L - q(L/2)(2L/3) = 0 \Rightarrow V_{B} = qL/3 = (2/3)P$$

$$\Sigma F \uparrow = 0 \Rightarrow V_{A} + V_{B} - qL/2 = 0 \Rightarrow V_{A} = qL/6 = P/3$$

Expressions des efforts internes:

$$M(0) = 0$$
, $M(L) = 0$, $M_{max} = M(\frac{L}{\sqrt{3}}) = 0.08 PL$

3.4.2 Exemple 2: Portique simple isostatique

Tracer le diagramme des efforts internes du portique représenté sur la Fig. 3.12.

Le portique se compose de 2 tronçons. Pour écrire les expressions des efforts internes on commence par l'extrémité libre C.

Tronçon BC: $0 \le x \le L$ N = -PT = qx = Px/L

Fig. 3.12

3.4.3 Exemple 3: poutre simple curviligne

Tracer les diagrammes des efforts internes de la poutre curviligne en quart de cercle sous les cas de charges indiqués sur la Fig. 3.13.

(a) Forces concentrées:

Pour déterminer les expressions de N et T, on projette les forces concentrées suivant les axes de N et T. L'expression de M est la somme des moments de toutes les forces par rapport à ce point.

32 RESISTANCE DES MATERIAUX DE BASE

(b) Charge uniformément répartie sur l'arc:

La résultante d'une charge uniformément répartie sur l'arc suivant une seule direction est égale au produit de l'intensité de la charge par la longueur de l'arc passant par son milieu et dirigée suivant l'orientation de la charge.

La longueur de l'arc faisant un angle α est dL = Rd α

et la force élémentaire : $dP = q dL = qR d\alpha$

Fig. 3.16

Pour $0 \le \theta \le 90$ on écrit les expressions de N, T et M

Fig. 3.17

(c) Charge uniformément répartie sur la projection horizontale de l'arc:

La résultante d'une charge uniformément répartie sur la projection de l'arc est égale au produit de l'intensité de la charge par la longueur de cette projection passant par son milieu et dirigée suivant l'orientation de la charge.

 $0 \le \theta \le 90$

Fig. 3.18

34 RESISTANCE DES MATERIAUX DE BASE

Fig. 3.19

EXERCICES / chapitre 3

3.1 Construire les diagrammes des efforts tranchants et moments fléchissants pour les poutres de la figure E3.1, et déduire les valeurs extrêmes.

3.2 Déterminer les expressions et les diagrammes de M, N, et T des portiques isostatiques de la figure E3.2. Calculer les moments fléchissants maximaux.

Fig. E3.1

36 RESISTANCE DES MATERIAUX DE BASE

3.3 On veut définir, de façon approchée mais rapide, la flexion maximale apportée par une dalle dans ses poutres de rives.

La dalle, simplement appuyée sur les poutres, supporte une charge

uniformément répartie q. Les poutres sont également simplement appuyées; on admettra qu'elles supportent les zones délimitées par des pointillés sur la Fig. E3.3.

Déterminer les densités de charges p_1 et p_2 permettant d'obtenir les moments fléchissants maximaux des poutres 1 et 2 (sous le seul effet de la dalle), par les formules:

Fig. E3.3

3.4 Etant données q, L, et P = 0.2 qL (Fig. E3.4). Calculer la longueur avantageuse de la console *a* et construire les diagrammes de T et M.

N.B: On appelle longueur avantageuse de la console d'une poutre la longueur de la console pour laquelle le moment fléchissant maximal a la plus petite valeur possible.

$$\checkmark$$
 $b = 0.676L, a = 0.162L$

Fig. E3.4

Chapitre 4

ETATS DE CONTRAINTE ET DE DEFORMATION

4.1 INTRODUCTION

L'objet de ce chapitre est l'étude des effets des charges sur les éléments auquels elles sont appliquées, en termes de contraintes et de déformations. Ces dernières constituent l'outil principal de mesure de la résistance et de la rigidité des éléments. En d'autres termes ce sont les quantités de base d'appréciation de l'état et du comportement des éléments sous l'effet des charges. Les définitions des notions de contraintes et de déformation seront d'abord présentées, ensuite les différents états de contraintes seront examinés. Les procédés de transformation (translation et rotation) des contraintes et des déformations seront énoncés. Finalement les relations entre les efforts et les contraintes d'une part, et d'autre part, entre ces dernières et les déformations seront aussi établies.

4.2 NOTION DE CONTRAINTE

Les efforts internes définis dans le chapitre précédent, engendré par des forces extérieures, ne sont que les résultantes des efforts élémentaires agissant sur chaque section de l'élément sollicité par les forces extérieures. On appelle ces efforts élémentaires, *contraintes*.

On considère les plans sécants π et π' passant par un point O d'un corps sollicité par des forces extérieures (Fig 4.1). Une contrainte normale σ de traction ou de compression au point O est l'effet d'éloignement ou de rapprochement respectivement des plans π et π' . L'effet de glissement des deux plans est attribué aux contraintes tangentielles τ . L'existence simultanée des contraintes normales et tangentielles tend à déplacer les plans suivant la direction de la résultante dite *vecteur contrainte p*.

L'étude de cette contrainte p pour toutes les orientations de l'élément de surface unitaire ds se trouvant dans un endroit précis de la section est appelée 'état de contrainte autour d'un point'.

Fig. 4.1

4.3 ETAT DE CONTRAINTE

Découpons au voisinage du point O du corps sollicité un parallélépipède rectangle infiniment petit de côtes dx, dy et dz. Sur chaque face de ce parallélépipède agissent une contrainte normale et deux contraintes tangentielles. La contrainte normale est positive quand elle agit sur une facette positive dans le sens positive de l'axe considéré ou sur une facette négative dans le sens négatif de cet axe. Une contrainte tangentielle est positive quand elle agit sur une facette positive dans le sens positif de l'axe parallèle à la facette ou sur une facette négative dans le sens négatif de l'axe parallèle à cette facette. Toutes les contraintes de l'élément représenté sur la Fig. 4.2a sont positives.

L'état de contrainte plan est le cas particulier d'une seule facette du volume où sur chaque côte agissent une contrainte normale et une contrainte tangentielle (Fig. 4.2b).

L'état de contrainte linéaire est le cas particulier d'un seul côté de la facette sur lequel agissent une contrainte normale et une contrainte tangentielle (Fig. 4.2c).

4.3.1 Equations de transformation de l'état de contrainte linéaire

Pour une barre en traction (Fig. 4.3), la contrainte normale qui se développe dans la section S est donnée par:

$$\sigma = \frac{N}{S} \tag{4-1}$$

L'état de contrainte dans un plan quelconque S_{α} dont la normale extérieure n_{α} coupe l'axe σ sous un angle α , la contrainte totale p_{α} est égale à

$$P_{\alpha} = \frac{N}{S_{\alpha}} = \frac{N}{S} \cos \alpha \tag{4-2}$$

$$= \sigma \cos \alpha \tag{4-3}$$

Les contraintes normales et tangentielles dans la section S_α

$$\sigma_{\alpha} = p_{\alpha} \cos \alpha = \sigma \cos^2 \alpha \tag{4-4}$$

$$\tau_{\alpha} = p_{\alpha} \sin \alpha = \sigma \cos \alpha \sin \alpha = (1/2) \sigma \sin 2\alpha$$
(4-5)

Etude de l'orientation:

$$\sigma_{\max} = \sigma = p_{\alpha} \quad \alpha = 0 \Longrightarrow \tau_0 = 0 \tag{4-6}$$

$$\tau_{\max} = \sigma/2 \qquad \alpha = \pi/4 \Rightarrow \sigma_{\pi/4} = \sigma/2$$
(4-7)

Considérons les contraintes qui agissent sur deux sections orthogonales:

$$\tau_{\alpha} = (1/2) \sigma \sin 2\alpha \tag{4-8}$$
$$\tau_{\alpha+\pi/2} = -\tau_{\alpha}$$

c'est la loi de réciprocité des contraintes tangentielles

4.3.2 Equation de contrainte de l'état de contrainte plan

Pour connaître les contraintes suivant une direction α par rapport à l'axe x, nous isolons une partie de l'élément en forme de prisme triangulaire (Fig. 4.4) droit. Soit S l'aire de la face du prisme opposé à l'angle droit, on a:

 $A_{X} = S \cos \alpha \tag{4-9}$ $A_{Y} = S \sin \alpha \tag{4-10}$

Les contraintes sur les différentes faces du prisme doivent s'équilibrer, on a:

Suivant la normale:

$$\sum F_{\alpha} = 0$$

$$\Rightarrow A\sigma_{\alpha} - A\sigma_{x} \cos\alpha^{2} - A\tau_{xy} \cos\alpha \cdot \sin\alpha - A\sigma_{y} \sin^{2}\alpha - A\tau_{yx} \sin\alpha \cdot \cos\alpha = 0 (4-11)$$
Suivant la tangente:

$$\sum F_{\alpha+90} = 0$$

$$\Rightarrow A\tau_{\alpha} + A\sigma_{x}\cos\alpha \cdot \sin\alpha - A\tau_{xy}\cos^{2}\alpha + A\tau_{xy}\sin^{2}\alpha - A\sigma_{y}\sin\alpha \cdot \cos\alpha = 0 \quad (4-12)$$

Soit

$$\sigma_{\alpha} = \sigma_{X} \cos^{2}\alpha + \sigma_{V} \sin^{2}\alpha + 2\tau_{XV} \sin\alpha \cdot \cos\alpha$$
(4-13)

$$\tau_{\alpha} = -(\sigma_{x} - \sigma_{y})\sin\alpha \cdot \cos\alpha + \tau_{xy}(\cos^{2}\alpha - \sin^{2}\alpha)$$
(4-14)

en substituant dans les équations (4-13) et (4-14) les expressions de

 $\cos^2\alpha=1/2(1+\cos2\alpha),\ \sin^2\alpha=1/2(1-\cos2\alpha)$ et sin α . $\cos\alpha=1/2\ \sin2\alpha,$ on obtient:

$$\sigma_{\alpha} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\alpha + \tau_{xy} \sin 2\alpha$$

$$\sigma_{\alpha+90} = \frac{\sigma_x + \sigma_y}{2} - \frac{\sigma_x - \sigma_y}{2} \cos 2\alpha - \tau_{xy} \sin 2\alpha$$

$$\tau_{\alpha} = -\frac{\sigma_x - \sigma_y}{2} \sin 2\alpha + \tau_{xy} \cos 2\alpha$$
(4-15)

42 RESISTANCE DES MATERIAUX DE BASE

Les équations (4-15) sont connues sous le nom d'équations de transformation des contraintes dans le plan.

Les Contraintes principales:

En variant l'angle α , les contraintes normales et tangentielles varient. Pour des raisons de résistance, les valeurs maximales des contraintes sont d'une grande utilité.

Pour déterminer la facette sur laquelle agit la contrainte normale σ_1 , on annule l'expression de la dérivée par rapport à α de σ_{α} .

$$\frac{d\sigma_{\alpha}}{d\alpha} = 0 \Longrightarrow \frac{\sigma_y - \sigma_x}{2} \sin 2\alpha + \tau_{xy} \cos 2\alpha = 0$$
(4-16)

et on tire
$$tg2\alpha_0 = \frac{2\tau_{xy}}{\sigma_x - \sigma_y}$$
 (4-17)

En utilisant (4-17), on peut écrire:

$$\cos 2\alpha = \frac{\sigma_x - \sigma_y}{2R} \quad et \quad \sin 2\alpha = \frac{\tau_{xy}}{R} \tag{4-18}$$

avec
$$R = \sqrt{\frac{(\sigma_x - \sigma_y)^2}{4} + \tau_{xy}^2}$$
 (4-19)

Par substitution dans (4-15), on obtient:

$$\sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\frac{(\sigma_x - \sigma_y)^2}{4} + \tau_{xy}^2}$$
(4-20)

et
$$\tau_{\alpha 0} = 0$$
 (4-21)

Pour distinguer l'orientation des axes principaux, on remplace l'angle $\alpha_0 \in [-\pi/2, +\pi/2]$ donné par la formule (4-17) dans l'expression de σ_{α} et on la compare avec σ_1 et σ_2 . Ainsi on identifie la direction de l'un des axes principaux, l'orientation du deuxième axe correspond à l'angle ($\alpha_0 \pm \pi/2$). Le sens positif des angles est le sens trigonométrique.

On peut aussi utiliser les eq. (4-18) et (4-19) pour déterminer l'angle α_0 car sur l'intervalle [0, 2π] un seul angle peut satisfaire les 2 équations en même temps.

Suivant un système d'axes orientés de α par rapport aux axes principaux les équations de transformations s'écrivent en fonction des contraintes normales principales sous les formes suivantes:

$$\sigma_{\alpha} = \frac{\sigma_1 + \sigma_2}{2} + \frac{\sigma_1 - \sigma_2}{2} \cos 2\alpha$$

$$\sigma_{\alpha+90} = \frac{\sigma_1 + \sigma_2}{2} - \frac{\sigma_1 - \sigma_2}{2} \cos 2\alpha$$

$$\tau_{\alpha} = -\frac{\sigma_1 - \sigma_2}{2} \sin 2\alpha$$
(4-22)

On procède de la même manière que pour les contraintes principales, en annulant l'expression de la dérivée de τ_α :

$$\frac{d\tau_{\alpha}}{d\alpha} = 0 \Longrightarrow -2\left(\frac{\sigma_x - \sigma_y}{2}\cos 2\alpha + \tau_{xy}\sin 2\alpha\right) = 0$$
(4-23)

$$\Rightarrow tg 2\alpha_{00} = -\frac{\sigma_x - \sigma_y}{2\tau_{xy}} \tag{4-24}$$

on remarque que:

$$tg 2\alpha_{00} \times tg 2\alpha_0 = -1$$

$$tg 2\alpha_{00} = \frac{-1}{tg 2\alpha_0} = -ctg 2\alpha_0$$
(4-25)

par analogie avec: $tg(\theta \pm \frac{\pi}{2}) = -ctg\theta$ (4-26)

on a donc:

$$2\alpha_{00} = 2\alpha_0 \pm \frac{\pi}{2}$$

$$\Rightarrow \alpha_0 = \alpha_0 \pm \frac{\pi}{4}$$
(4-27)

Le plan des contraintes tangentielles maximales est à 45° par rapport à celui des contraintes normales principales.

de (4-24) on déduit que:

$$\cos 2\alpha_{00} = \frac{\tau_{xy}}{R} \quad \text{et} \quad \sin 2\alpha_{00} = -\frac{\sigma_x - \sigma_y}{2R} \tag{4-28}$$

et en substituant ces valeurs dans l'expression τ_{α} des eq.(4-15) on obtient l'expression de la contrainte tangentielle maximale:

$$\tau_{1,2} = \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$
(4-29)

44 RESISTANCE DES MATERIAUX DE BASE

Les orientations des facettes des contraintes tangentielles maximales sont déterminées de la même façon que les axes des contraintes principales en remplaçant l'angle $\alpha_{00} \in [-\pi/2, \pi/2]$ dans l'expression (4-15) et on compare avec $\tau_{1,2}$.

La contrainte normale associée est donnée par:

$$\sigma_{ass} = \sigma_{\alpha 00} = \frac{\sigma_x + \sigma_y}{2} \tag{4-30}$$

4.4 CERCLE DE MOHR POUR LES CONTRAINTES

Le principe de la représentation graphique des contraintes connue sous le nom de *cercle de Mohr* est similaire à celui qu'on a décrit dans le chapitre 2 concernant les v.

propriétés géométriques des formes. L'axe des abscisses représente les contraintes normales et les contraintes tangentielles sont projetées sur un axe perpendiculaire dirigé

Fig. 4.5

vers le bas, afin que le sens positif des angles soit le sens trigonométrique.

Le cercle de Mohr peut être positionné sur le plan (σ , τ) en connaissant l'état de contrainte en un point défini par σ_x , σ_v et l'utiliser de $\tau_{\rm XV}$ et pour déterminer graphiquement les contraintes principales σ_1 et σ_2 . Dans ce cas on fixe deux points $A(\sigma_x, \tau_{xy})$ et $B(\sigma_V, \tau_{XV})$ sur le plan (σ, τ) et on prend le segment AB qui coupe l'axe σ en C comme le diamètre du cercle de Mohr ayant son centre

Fig. 4.5

en C. Les points d'intersection de la circonférence avec l'axe σ déterminent les contraintes σ_1 et σ_2 . L'angle entre AC et l'axe σ est égal à $2\alpha_0$.

Le problème indirect consiste à construire le cercle de Mohr à partir de l'état de contrainte principal et de déterminer ensuite n'importe quel état de contrainte orienté d'un angle α .

4.5 RELATIONS ENTRE CONTRAINTES ET DEFORMATION

Considérons une barre constituée d'un matériau homogène et isotrope sollicité par des forces axiales (Fig. 4.6).

En supposant que l'hypothèse de Bernoulli est valable, alors toutes les fibres d'un élément de longueur L s'allongent d'une longueur ΔL et leurs allongements relatifs ε sont définis par:

$$\varepsilon = \frac{\Delta L}{L} = \text{const}$$
 ante
31)

(4-31)

La relation contrainte-déformation est définie par la loi de Hooke qui traduit la dépendance linéaire des déformations par rapport aux contraintes:

$$\varepsilon = \frac{\sigma}{E}$$
 ou $\sigma = E\varepsilon$ (4-32)

Où E est le coefficient de proportionnalité appelé module d'élasticité ou module d'Young.

E a la dimension d'une contrainte [N/mm²] et représente une des constantes caractéristiques mécanique du matériau.

Comme σ_x conduit à l'apparition de la déformation relative ε_x , il en est de même pour les contraintes tangentielles τ_{xy} qui engendrent des déformations relatives γ_{xy} . Si on considère maintenant un élément de volume unitaire soumis à l'action de la contrainte τ_{xy} , le déplacement de la facette x le long de l'axe y provoque une distorsion des facettes z, faisant ainsi varier l'angle droit de γ_{xy} comme le montre la Fig. 4.7

La relation entre la contrainte tangentielle et la déformation relative γ_{XY} est exprimée par la loi de Hooke pour le cisaillement par:

$$\gamma_{\rm xy} = \frac{\tau_{\rm xy}}{\rm G} \tag{4-33}$$

Où G est le coefficient de proportionnalité qu'on appelle module d'élasticité transversal qui a les dimensions d'une contrainte.

Fig. 4.7

4.5.1 Loi de Hooke généralisée

La loi de Hooke généralisée traduit les relations linéaires entre contraintes et déformations dans le cas tridimensionnel.

46 RESISTANCE DES MATERIAUX DE BASE

Considérons d'abord les déformations normales ε_x , ε_y et ε_z de l'élément de volume unitaire de la Fig. 4.8. Ces déformations peuvent être exprimées en termes des contraintes normales par superposition de leurs efforts.

Chaque contrainte normale provoque selon son axe d'application une déformation relative ε proportionnelle à la contrainte σ :

$$\varepsilon = \frac{\sigma}{E} \tag{4-}$$

et suivant les deux autres axes, des déformations relatives

$$\varepsilon' = -\nu \frac{\sigma}{E} \tag{4-}$$

35) et

$$\varepsilon'' = -v \frac{\sigma}{E} \tag{4-}$$

36)

v est le coefficient de Poisson, sans dimension $(0 \le v \le 0.5)$

Donc la déformation relative suivant chaque axe est la somme de

la déformation relative due à la contrainte suivant cet axe et celles provoquées par les contraintes selon les deux autres axes perpendiculaires.

D'où

$$\varepsilon_{x} = \frac{\sigma_{x}}{E} - \nu \frac{\sigma_{y}}{E} - \nu \frac{\sigma_{z}}{E} = \frac{1}{E} \left[\sigma_{x} - \nu (\sigma_{y} + \sigma_{z}) \right]$$
(4-37)

De même pour

$$\varepsilon_{y} = \frac{1}{E} \left[\sigma_{y} - \nu (\sigma_{x} + \sigma_{z}) \right]$$
(4-38)

$$\varepsilon_{z} = \frac{1}{E} \left[\sigma_{z} - \nu (\sigma_{x} + \sigma_{y}) \right]$$
(4-39)

Il faut noter que les contraintes tangentielles ne provoquent qu'une distorsion angulaire:

$$\gamma_{xy} = \frac{\tau_{xy}}{G} \tag{4-40}$$

Ces équations représentent la loi de Hooke généralisée caractérisée par les constantes élastiques E, G et v. Un matériau élastique, isotrope, est

complètement défini par E et v car il existe une relation entre les trois paramètres définie par:

$$G = \frac{E}{2(1+\nu)} \tag{4-41}$$

Le module d'élasticité E est une caractéristique de la rigidité du matériau. Il représente sa capacité à s'opposer à la déformation. Quelques valeurs typiques de E pour certains matériaux sont données dans le tableau suivant:

Matériaux	E (N/mm²)
Caoutchouc	8.
Plastique, Polythene, Nylon	1400.
Bois (le long des fibres)	14000.
Béton (200)	23000.
Verre ordinaire	70000.
Aluminium allié	70000.
Aciers alliés	210000.
Diamant	12000000.

Variation d'un volume unitaire

La variation d'un volume unitaire $V_0 = 1 \times 1 \times 1$ d'un point d'un corps soumis à des contraintes normales peut être écrite comme:

$$\Delta \mathbf{V} = \mathbf{V}_{\rm f} - \mathbf{V}_{\rm 0} = (1 + \varepsilon_{\rm x})(1 + \varepsilon_{\rm y})(1 + \varepsilon_{\rm z}) - 1 \tag{4-42}$$

V_f : volume de l'élément après déformation

V₀: volume initial de l'élément

En négligeant les termes faisant intervenir le produit des petites quantités :

$$e = \frac{\Delta V}{V_0} = \varepsilon_x + \varepsilon_y + \varepsilon_z \tag{4-43}$$

4.6 EQUATIONS DE TRANSFORMATION DES DEFORMATIONS

Les équations de transformation des déformations planes ε_x , ε_y , ε_{xy} définies dans un repère XOY en fonction des déformations ε_{α} et γ_{α} exprimées dans un repère X₁OY₁ orienté d'un angle α par rapport à XOY sont données par:

48 RESISTANCE DES MATERIAUX DE BASE

$$\varepsilon_{\alpha} = \frac{\varepsilon_{x} + \varepsilon_{y}}{2} + \frac{\varepsilon_{x} - \varepsilon_{y}}{2} \cos 2\alpha + \frac{\gamma_{xy}}{2} \sin 2\alpha$$

$$\frac{\gamma_{\alpha}}{2} = -\frac{\varepsilon_{x} - \varepsilon_{y}}{2} \sin 2\alpha + \frac{\gamma_{xy}}{2} \cos 2\alpha$$
(4-44)

L'analogie qui existe entre ces équations et celles des transformations des contraintes planes est définie par :

$$\begin{aligned} \sigma_{\rm X} &\to \ \varepsilon_{\rm X} \\ \sigma_{\rm y} &\to \ \varepsilon_{\rm y} \\ \tau_{\rm xy} &\to \frac{\gamma_{\rm xy}}{2} \end{aligned}$$

Ainsi toutes les propriétés des transformations des contraintes planes sont applicables à celles des déformations. En particulier les déformations principales:

$$\varepsilon_{1,2} = \frac{\varepsilon_x + \varepsilon_y}{2} \pm \sqrt{\left(\frac{\varepsilon_x - \varepsilon_y}{2}\right)^2 + \left(\frac{\gamma_{xy}}{2}\right)^2} \tag{4-45}$$

et l'orientation des déformations principales:

$$tg2\alpha_0 = \frac{\gamma_{xy}}{\varepsilon_x - \varepsilon_y}$$
(4-46)

ainsi que les déformations angulaires maximales:

$$\frac{\gamma_{\text{max}}}{2} = \sqrt{\left(\frac{\varepsilon_x - \varepsilon_y}{2}\right)^2 + \left(\frac{\gamma_{xy}}{2}\right)^2} \tag{4-47}$$

Le principe du cercle de Mohr est valable pour la représentation géométrique des déformations en respectant l'analogie entre les contraintes et les déformations. Ainsi les coordonnées des points A et B deviennent:

$$A(\varepsilon_x, \frac{\gamma_{xy}}{2})$$
 et $B(\varepsilon_y, -\frac{\gamma_{xy}}{2})$

4.7 MESURE DES DEFORMATIONS: EXTENSIOMETRIE ELECTRIQUE

Il existe plusieurs méthodes de mesure des déformations (mécanique, électrique ou optique). On se limitera ici à la méthode de l'extensiométrie électrique par jauges de déformations qui consiste à déterminer les déformations longitudinales à l'aide d'une jauge électrique. Une jauge électrique est une résistance électrique constituée d'un fil métallique replié en brins parallèles et fixé sur un support isolant et de rigidité négligeable. Ce support est collé avec soin sur la surface de l'élément à étudier. La déformation du fil métallique induit alors une variation de la résistance électrique R de la jauge qui, mesuré par une

technique appropriée à l'aide d'un pont Weastone, permet de remonter aux déformations et plus précisément, sous réserve que l'influence de l'allongement transversal et du glissement soit négligeable, à l'allongement dans la direction longitudinal de la jauge.

Fig. 4.9

Ces jauges sont extrêmement sensibles et peuvent détecter des déformations de l'ordre de 10^{-6} . Une jauge permet de mesurer l'allongement relatif suivant une seule direction, il est donc souvent nécessaire d'utiliser trois jauges pour effectuer 3 mesures suivant trois directions différentes pour pouvoir déterminer l'état de déformation en un point de la surface à étudier. L'ensemble des trois jauges disposées suivant une géométrie précise est appelée rosette.

Dans la pratique on place les 3 jauges de telle façon que les angles qui les séparent soient des valeurs simples (45°, 60°, 120°).

A l'aide d'une rosette à 45°, fixée en un point d'un élément, on mesure les déformations relatives ε_a , ε_b et ε_{45} suivant les axes x, y et l'axe orienté à 45° respectivement.

Pour définir complètement l'état de déformation dans ce point on doit déterminer γ_{xy} . On utilise donc l'équation de transformation suivante:

$$\varepsilon_{\alpha} = \frac{\varepsilon_{x} + \varepsilon_{y}}{2} + \frac{\varepsilon_{x} - \varepsilon_{y}}{2} \cos 2\alpha + \frac{\gamma_{xy}}{2} \sin 2\alpha \tag{4-48}$$

pour $\alpha = 45^{\circ}$ on a:

$$\varepsilon_{\alpha} = \varepsilon_{b}$$

$$\Rightarrow \varepsilon_{b} = \frac{\varepsilon_{a} + \varepsilon_{c}}{2} + \frac{\varepsilon_{a} - \varepsilon_{c}}{2} \cos 90 + \frac{\gamma_{xy}}{2} \sin 90 \qquad (4-49)$$

$$\Rightarrow \gamma_{xy} = 2\varepsilon_{b} - \varepsilon_{a} - \varepsilon_{c}$$

4.8 APPLICATIONS

Exemple 1

Les mesures des jauges d'une rosette à 45° fixé en un point d'une structure sont les suivantes:

50 RESISTANCE DES MATERIAUX DE BASE

$$\varepsilon_{a} = \varepsilon_{x} = 280 \times 10^{-6}$$
$$\varepsilon_{c} = \varepsilon_{y} = -160 \times 10^{-6}$$
$$\varepsilon_{b} = 190 \times 10^{-6}$$

Déterminer les déformations principales en ce point.

Solution

On calcule à l'aide de l'eq.(4-50) la déformation angulaire:

$$\gamma_{\text{max}} = [2 \times 190 - 280 - (-160)] \times 10^{-6} = 260 \times 10^{-6}$$

en remplaçant dans l'eq.(4-45) les valeurs des déformations ε_x , ε_y et γ_{xy} on obtient:

$$\varepsilon_1 = 316 \times 10^{-6}$$
$$\varepsilon_2 = -196 \times 10^{-6}$$

Exemple 2

Une plaque rectangulaire en acier ayant les dimensions L = 800 mm, b = 400 mm et t = 20 mm est sollicitée par des contraintes normales $\sigma_x = 60 \text{ N/mm}^2$ et $\sigma_y = -18 \text{ N/mm}^2$. Sachant que $E = 2.10^5 \text{ N/mm}^2$ et v = 0.3 déterminer la déformation Δt et la variation du volume ΔV .

Solution

$$\frac{\Delta t}{t} = \varepsilon_z = -\frac{v}{E} (\sigma_x + \sigma_y), \quad \text{car } \sigma_z = 0$$

$$= -\frac{0.3}{2.10^5} (60 - 18) = -6.3 \times 10^{-5} \text{ mm}$$

$$\frac{\Delta V}{V} = \frac{\Delta L}{L} + \frac{\Delta b}{b} + \frac{\Delta t}{t} = \varepsilon_x + \varepsilon_y + \varepsilon_z$$

$$\frac{\Delta b}{b} = \varepsilon_y = \frac{\sigma_y}{E} - \frac{v}{E} \sigma_x = 0.5 \times 10^{-5} [-18 - 0.3 \times 60] = -1.8 \times 10^{-4}$$

$$\frac{\Delta L}{L} = \varepsilon_x = \frac{\sigma_x}{E} - \frac{v}{E} \sigma_y = 0.5 \times 10^{-5} [60 + 18 \times 0.3] = 3.27 \times 10^{-4}$$

$$\frac{\Delta V}{V} = (3.27 - 1.8 - 0.63) \times 10^{-4} = 0.84 \times 10^{-4}$$

$$\Delta V = 400 \times 800 \times 20 \times 0.84 \times 10^{-4} = 537.6 \text{ mm}^3$$

(b)

4.1 Les états de contraintes de quelques points d'un corps chargé sont représentés sur la Fig. E4.1. Déterminer les contraintes principales, l'orientation des axes principaux, l'intensité et l'orientation des contraintes tangentielles maximales et leurs contraintes normales associées. Pour chaque cas schématiser les résultats sur un élément proprement orienté.

(a)

✔(a) 64.72,	(b) 48.28,	(c) 6.7
-24.72,	-8.28,	-16.70
-31.71,	-22.5,	-9.99
±44.72,	±28.28,	±11.70
13.28,	22.5,	35.00
20.0,	20.0,	-5.0

4.2 Un cas de charge appliqué à une structure produit un état de contrainte en un point schématisé cicontre (Fig. E4.2).

1) Déterminer les contraintes principales et leurs orientations.

2) Déterminer les contraintes tangentielles maximales. leurs orientations et la contrainte associée.

3) Peut-on obtenir une facette de cisaillement pur? Si oui déterminer l'orientation de cette facette

✓28.8, 8.2, 25.45, ±10.30, -19.54, 18.5

4.3 On considère l'état de contraintes plan de la Fig. E4.3.

1. Tracer le cercle de Mohr et calculer les contraintes principales. Déterminer les directions principales dans le plan de contraintes.

2. On veut éviter toute contrainte de traction, définir la valeur de σ_v strictement nécessaire.

3. On désire réduire davantage le diamètre du cercle de Mohr, soit $D = 400 \text{ N/mm}^2$; déterminer les contraintes principales nécessaires, de telle sorte que les directions de deux d'entre elles restent dans le plan initial, et sachant que les contraintes σ_{X} et τ_{XV} restant inchangées.

✓450 N/mm², -50 N/mm²,- 18.05°, 56.25 N/mm², 467.71 N/mm², 67.71 N/mm²

4.4 Un point d'une structure soumise à un chargement est défini par l'état de contrainte représenté par l'élément A sur la Fig. E4.4. L'élément B représente le même point mais orienté d'un angle α_1 . Calculer la contrainte normale σ_{y1} et l'angle d'orientation α_1 . \checkmark 30 N/mm², 33.7°

Fig. E4.4

4.5 Résoudre l'exercice 4.4 en utilisant la méthode graphique (Cercle de Mohr).

4.6 Un corps est soumis à un système de forces et de moments. Chaque système produit un état de contrainte en un point montré sur la Fig. E4.6. Déterminer les contraintes principales et leurs orientation dans ce point sous l'effet du chargement combiné.

✓ 51.96 N/mm², -51.96 N/mm², -30°.

4.7 Un élément unitaire sur un corps sollicité par des forces extérieures subit les déformations suivantes:

 $\epsilon_x = 230 \times 10^{-6}$, $\epsilon_y = 510 \times 10^{-6}$, et $\gamma_{xy} = 180 \times 10^{-6}$.

Calculer les déformations d'un élément orienté de 40°.

✓ 434.3 × 10⁻⁶

4.8 Une jauge électrique en rosette à 45° est attachée à la base d'un poteau de portique soumis à un test statique. Sous l'effet du chargement on mesure les déformations suivantes:

jauge A, 530×10^{-6} , jauge B, 420×10^{-6} , jauge C, 80×10^{-6} . Déterminer les déformations principales et les déformations angulaires maximales.

4.9 Une plaque rectangulaire mince en acier est soumise à des contraintes normales uniformes σ_x et σ_y . On mesure les déformations relatives $\varepsilon_x = 0.001$ et

 $\label{eq:second} \begin{array}{ll} \epsilon_{y} = -0.0007 & respectivement \\ suivant x et y à l'aide d'une jauge \\ électrique attachée au point A \\ comme l'indique la Fig. E4.9. \\ Sachant que E = 2.07 x 10^5 \ N/mm^2 \\ et le coefficient de Poisson v = 0.3, \\ déterminer les contrainte \sigma_x et \sigma_v. \end{array}$

✓ 179.1 N/mm², -90.95 N/mm²

Chapitre 5

CRITERES DE RESISTANCE

5.1 INTRODUCTION

Un aspect très important dans la conception des structures est la détermination de la capacité de ces dernières à transmettre ou à supporter les charges qui leurs sont appliquées.

Si le but de tout calcul est d'éviter la destruction, les règles de construction exigent que les contraintes de service soient sensiblement inférieures à celles que devraient supporter la structure. L'aptitude d'une structure à supporter des charges est appelé la résistance. L'objectif de ce chapitre est l'étude des méthodes d'évaluation ou de vérification de la résistance d'un élément de la structure sur la base d'un état de contrainte ou de déformation connu en un point de l'élément.

5.2 COURBE CONTRAINTE - DEFORMATION

L'étude des propriétés mécaniques des matériaux s'effectue sur des éprouvettes dont on mesure les F variations des dimensions sous l'action de diverses sollicitations. L'essai le plus simple et le plus pratiqué sur les matériaux tel les éprouvette métaux, est l'essai de traction simple. Les appareils pour ce genre d'essais, devenant de plus en plus précis, permettent d'appliquer une force croissante F sur des éprouvettes standardisées et à l'aide d'un dispositif d'extensiometrie de ∳ F mesurer allongement un longitudinal

 $\varepsilon = \Delta L/L$.

La Fig. 5.1 schématise un essai de traction où l'éprouvette est sollicitée par une force F croissante à l'aide d'une machine d'essai spéciale.

La Fig 5.2 présente l'allure typique de la courbe expérimentale $\sigma = f(\varepsilon)$ obtenue lors d'un essai de traction réalisé sur une éprouvette en acier doux.

La contrainte σ est prise égale à la charge F divisée par la section initiale de l'éprouvette (contrainte nominale) et la déformation est relativement par rapport à la longueur de la jauge. (Déformation relative nominale).

Le diagramme comporte une première partie OA rectiligne, qui définit le domaine linéaire du matériaux où la contrainte σ est proportionnelle à la déformation ɛ. A partir du point A débute le domaine des déformations non linéaire mais le phénomène reste toujours réversible. Le point B correspond à la contrainte limite d'élasticité c'est à dire à partir duquel tout chargement supplémentaire et déchargement résulte en déformations résiduelles (permanentes). Entre B et C, l'éprouvette s'allonge sous un effort sensiblement constant. Le palier BC est la zone d'étirement (écoulement). La zone CD est la zone de raffermissement (durcissement) ou d'écrouissage. Le sommet D de la courbe correspond à la contrainte de la limite de résistance, l'allongement ne se répartit plus sur la longueur de l'éprouvette, mais se concentre au voisinage d'une section droite dont l'aire diminue rapidement jusqu'à ce que se produise la rupture (point E). La contrainte correspondante, est appelée limite de rupture.

Il faut noter que la courbe en pointillé représente la contrainte réelle qui prend en compte la diminution de la section de l'éprouvette.

Fig. 5.2

Par contre un matériau fragile est caractérisé par une zone élastique OA, ensuite une zone non-linéaire courte qui se termine par une rupture soudaine au point B, une fois que le matériau ait atteint sa limite de résistance ultime comme le montre la Fig. 5.3.

56 RESISTANCE DES MATERIAUX DE BASE

Fig. 5.3

5.3 CONTRAINTE ADMISSIBLE

Pour que la structure puisse supporter des charges *sans danger*, il faut que les contraintes qui s'y développent restent toujours inférieures à une contrainte limite appelée *contrainte admissible*. Pour des raisons de sécurité cette contrainte ne constitue qu'une fraction de la contrainte limite du matériau et définie par :

$$[\sigma] = \frac{\sigma_d}{n}$$

Où $[\sigma]$ est la contrainte admissible,

 σ_d est la contrainte dangereuse,

n est le facteur de sécurité.

Généralement la contrainte dangereuse est prise comme étant la limite d'écoulement des éléments en matériau ductile, et la limite de résistance pour les éléments en matériau fragile.

Le facteur n définissant la marge de sécurité dépend de la nature du matériau, du mode d'application des charges et de tous les facteurs qui influent sur la détermination des propriétés mécaniques présentant une marge d'incertitudes théoriques ou expérimentales.

Pour les matériaux ductiles et pour une charge statique on prend

$$\sigma_d = \sigma_{ec}$$
 et $n = n_{ec}$
Avec $n_{ec} = 1.4 - 1.6$
Donc $[\sigma] = \frac{\sigma_{ec}}{n_{ec}}$

Exemple: acier doux : $\sigma_{ec} = 250$ N/mm² $n_{ec} = 1.7 \Rightarrow [\sigma] = 250/1.7$

 $= 150 \text{N/mm}^{2}$.

Un matériau fragile résiste mieux à la compression: $[\sigma_{-}] > [\sigma_{+}]$ $n = 2.5 \approx 3$

5.4 THEORIES FONDAMENTALES DE LA RESISTANCE

Les critères de la résistance sont des conditions théoriques qui permettent au concepteur de dire, à partir de l'état de contrainte et de déformation le plus défavorable, si une structure est capable de résister sans danger aux charges qui lui sont appliquées.

5.4.1 Critère des contraintes normales maximales (Rankine)

La limite de résistance est atteinte lorsque l'une des contraintes principales atteint la limite élastique en traction simple ou en compression simple. La condition de résistance est définit alors par :

$$\sigma^+_{\max} \le [\sigma_+] \tag{5-3}$$

Pour un matériau homogène et fragile (verre, gypse, etc), il faut aussi vérifier:

$$\left|\sigma_{\max}^{-}\right| \leq [\sigma_{-}] \tag{5-4}$$

avec : σ^+_{max} : la contrainte normale de traction maximale

 σ_{max} : la contrainte normale de compression maximale

 $[\sigma_+]$, $[\sigma_-]$: les contraintes admissibles de traction et de compression

5.4.2 Critère des déformations linéaires relatives maximales

Ce critère limite les déformations linéaires par une déformation admissible [ɛ], et la condition de résistance s'écrit alors:

$$\varepsilon_{\max} \le [\varepsilon]$$
 (5-5)

Si on considère que $[\varepsilon] = \frac{[\sigma]}{E}$ et que $\varepsilon_{\text{max}} = \varepsilon_1 = \frac{1}{E} [\sigma_1 - \nu(\sigma_2 - \sigma_3)]$

La condition de résistance devient alors:

$$\sigma_1 - \nu(\sigma_2 + \sigma_3) \le [\sigma] \tag{5-6}$$

Ce qui revient à comparer la combinaison des contraintes principales à la contrainte admissible au lieu des contraintes maximales de traction et de compression. Cette théorie n'est presque pas utilisée dans les calculs pratiques à cause de sa faible fiabilité.

58 RESISTANCE DES MATERIAUX DE BASE

5.4.3 Critère de cisaillement maximum (Coulomb)

La contrainte tangentielle maximale ne devrait pas excéder une contrainte admissible de cisaillement $[\tau]$. La condition de résistance dans ce cas s'écrit :

$$\tau_{\max} \le [\tau] \tag{5-7}$$

Etant données que $\tau_{\text{max}} = \frac{\sigma_1 - \sigma_3}{2}$ (5-8)

$$et \quad [\tau] = \frac{[\sigma]}{2} \tag{5-9}$$

La condition de résistance s'écrit alors:

$$\sigma_1 - \sigma_2 \le [\sigma] \tag{5-10}$$

L'influence de σ_2 dans un état de contrainte tridimensionnel n'est pas prise en charge par ce critère, mais il donne de bons résultats pour les matériaux ayant une égale résistance en traction et en compression.

5.4.4 Critère de l'énergie potentielle spécifique de la modification de la forme

Ce critère est basé sur la capacité de l'énergie potentielle spécifique de la déformation élastique emmagasinée dans l'élément.

On démontre que la condition de résistance en traction ou compression simple s'écrit, dans le cas général:

$$\sqrt{\frac{1}{2} \left[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 \right]} \le [\sigma]$$
(5-11)

5.4.5 Critère de Mohr-Coulomb

Ce critère part de l'hypothèse que la résistance des matériaux dépend principalement de la valeur et du signe de la contrainte principale majeure σ_1 et de ceux de la contrainte principale mineure σ_3 . La condition de résistance s'exprime alors:

$$\sigma_1 - \frac{[\sigma_+]}{[\sigma_-]} \sigma_3 \le [\sigma] \tag{5-12}$$

Ce critère de Mohr permet de déterminer la résistance à la destruction des matériaux dont la résistance à la traction et celle à la compression sont différentes.

Pour conclure ce chapitre, on doit noter que les critères de résistance sont nombreux et ceux présentés ne sont que les critères classiques les plus utilisés en résistance des matériaux.

Chapitre 6 TRACTION ET COMPRESSION

6.1 INTRODUCTION

Ce chapitre étudie le comportement des éléments de structure sollicités axialement. Tous les éléments ayant des lignes moyennes droites et soumis à des efforts axiaux (de traction ou de compression) font l'objet de cette étude.

Ce type d'éléments (généralement des barres) peuvent être rencontrés dans différentes structures tel que les systèmes réticulés (ferme, poutre à treillis,...etc), les diagonales de contreventement, les boulons, et les poteaux des bâtiments...etc. Les aires des sections de ces éléments peuvent avoir plusieurs formes: section pleine, creuse, ou à paroi épaisse.

Fig. 6.1

Le calcul des contraintes maximales développées et les déformations longitudinales constituent une étape essentielle dans l'analyse et la conception des structures formées d'éléments sollicités par des efforts axiaux.

6.2 DEFORMATION DES BARRES EN TRACTION ET COMPRESSION

Soit une barre prismatique de longueur L soumise à un effort de traction P (Fig. 6.2).

La contrainte normale
$$\sigma = \frac{N}{S}$$
 (6-1)

Avec

N = P effort de traction

S: aire de la section.

La déformation relative:
$$\varepsilon = \frac{\Delta L}{L}$$
 (6-2)

La loi de Hooke : $\sigma = E\varepsilon$ (6-3)

60 RESISTANCE DES MATERIAUX DE BASE

En substituant (6-1) et (6-2) dans (6-3)

On obtient:

$$E\frac{\Delta L}{L} = \frac{N}{S} \Longrightarrow N = \frac{ES}{L}\Delta L$$
(6-4)

Par analogie avec un ressort de raideur K sollicité par un effort N qui se déforme de ΔL , tel que:

$$N = K \Delta L \tag{6-5}$$

La rigidité longitudinale d'une barre est obtenue par identification de l'eq.(6-4) et (6-5):

$$K = \frac{ES}{L}$$
(6-6)

La rigidité longitudinale ou l'aptitude d'un élément à se déformer longitudinalement dépend donc des caractéristiques mécaniques et géométriques de l'élément.

Pour une barre composée de plusieurs tronçons, la déformation totale est donnée par:

$$\Delta L = \sum \frac{N_i L_i}{E_i S_i}$$
 (6-7) A1 A2 A3 Ai

Et pour le cas le plus général ou l'aire de la section droite et l'effort normal N varient le long de la ligne moyenne de l'élément, l'équation (6-7) devient alors:

$$\Delta L = \int_0^L \frac{N(x)}{ES(x)} dx$$
(6-8)

6.3 SOLLICITATIONS DUES A LA VARIATION DE TEMPERATURE

Comme les structures sont généralement sujettes à des variations de température climatique ou industrielle, l'effet de ces dernières se manifeste sous forme de déformations (dilatation et rétrécissement) des éléments. Ces déformations induisent des contraintes supplémentaires. Dans cette section on étudiera l'effet de la variation de température sur les éléments structuraux. Toute variation de température entraîne un changement de dimensions. La déformation est uniforme selon les trois directions et elle est donnée par:

$$\varepsilon = \alpha \, \Delta T \tag{6-9}$$

$$\varepsilon_{\rm X} = \varepsilon_{\rm V} = \varepsilon_{\rm Z} = \varepsilon \tag{6-10}$$

 α : Coefficient de dilatation thermique [1/c]

 ΔT : variation de la température

On donne quelques valeurs du coefficient α pour certains matériaux:

Cuivre: 19.1×10⁻⁶ /°C

Acier : $12 \times 10^{-6} / ^{\circ}C$

Béton : 11×10⁻⁶ /°C

La contrainte qui se développe dans une barre bi-encastrée, par exemple, soumise à un changement une variation ΔT est équivalente à la contrainte nécessaire de provoquer une déformation égale à celle provoquée par la variation de température mais de signe contraire (Fig. 6.3).

La déformation due à la variation de la température:

 $\varepsilon = \alpha \Delta T$

La déformation due à la réaction de l'encastrement :

 $\varepsilon = \sigma / E$

D'où

 $\sigma = E\alpha\Delta T$

6.4 SYSTEMES DE BARRES ISOSTATIQUES

Un système est isostatique quand on peut déterminer les efforts internes par les seules équations d'équilibre.

Exemple

Déterminer les efforts, les contraintes et les déformations dans les différents tronçons de la colonne représentée sur la Fig. 6.6, sachant que $d_{1-1} = 50$ mm,

 $d_{2-2} = 100 \text{ mm}, d_{3-3} = 200 \text{ mm}$ et $E = 2.1 \times 10^5 \text{ N/mm}^2$

Fig. 6.4

Fig. 6.5

RESISTANCE DES MATERIAUX DE BASE

Section 1-1: $N + 400 = 0 \Longrightarrow N = -400 \text{ kN}$ $\sigma = \frac{N}{S} = \frac{-400 \times 10^3}{\pi \times (25)^2} = -203.7 \text{ N/mm}^2$ $\Delta L_{AB} = \frac{\sigma L}{E} = \frac{-203.7 \times 3000}{2.1 \times 10^5} = -2.91 \text{mm}$ Section 2-2:

 $\Delta L_{BC} = \frac{\sigma L}{E} = \frac{-178.3 \times 3000}{2.1 \times 10^5} = -2.55 \text{ mm}$

 $\sigma = \frac{N}{S} = \frac{-1400 \times 10^3}{\pi \times (50)^2} = -178.3 \text{ N/mm}^2$

 $N + 400 + 2 \ge 500 = 0 \implies N = -1400 \text{kN}$

Section 3-3:

N + 400 + 2 x 500 + 2 x 800 =0
⇒ N = -3000kN

$$\sigma = \frac{N}{S} = \frac{-3000 \times 10^3}{\pi \times (100)^2} = -95.5 \text{ N/mm}^2$$

$$\Delta L_{CD} = \frac{\sigma L}{E} = \frac{-95.5 \times 3000}{2.1 \times 10^5} = -1.36 \text{ mm}$$

 $\Delta L_t = -2.91 - 2.55 - 1.36 = -6.82 \text{ mm}$

6.5 SYSTEMES DE BARRES HYPERSTATIQUES

On appelle structures hyperstatiques les structures pour lesquelles les efforts qui sollicitent leurs éléments ne peuvent pas être déterminés à l'aide des équations statiques. La résolution de ces systèmes s'effectue en considérant les aspects décrits ci-dessous:

1/ Aspect statique : écrire les équations d'équilibre des barres sectionnées.

2/ Aspect géométrique: établir le rapport entre les déformations à partir de la compatibilité géométrique.

Source: www.almohandiss.com

62

3/ Aspect physique du problème: établir les relations effort-déformation en utilisant la loi de Hooke : $\Delta L = \frac{NL}{ES}$ pour transformer les expressions de déformation en équations ayant des efforts normaux comme inconnus.

4/ Résolution du système d'équations.

6.5.1 APPLICATION

Soit le système de barres défini sur la figure 6.7 ci-après.

Etant données: L $_1,\,S_1,\,L_2,\,S_2,\,L_3,\,S_3$, P et α

avec $L_2 = L_3$

déterminer les efforts dans les barres.

Solution:

1- Aspect statique $\sum Fx = 0$ $N_{2} \sin \alpha - N_{3} \sin \alpha = 0$ $\Rightarrow N_{2} = N_{3} \qquad (1)$ $\sum Fy = 0$ $N_{1} + N_{2} \cos \alpha + N_{3} \cos \alpha - P = 0$ $\Rightarrow N_{1} + 2N_{2} \cos \alpha = P \qquad (2)$

Fig. 6.7

2- Aspect géométrique

$$\Delta l_2 = \Delta l_3 = \Delta l_1 \cos \alpha$$

3- Aspect physique:

$$\Delta L_1 = \frac{N_1 L_1}{ES} \qquad \text{et} \qquad \Delta L_2 = \frac{N_2 L_2}{ES}$$

En substituant dans (3), on obtient

$$\frac{N_2L_2}{ES} = \frac{N_1L_1}{ES}\cos\alpha \Longrightarrow N_2L_2 = N_1L_1\cos\alpha$$

4- Synthèse et résolution des équations

On élimine N₃ de (2) \Rightarrow N₁ + 2N₂ cos α = P

64 RESISTANCE DES MATERIAUX DE BASE

de (5) on tire N₁ = N₂
$$\frac{L_2}{L_1 \cos \alpha}$$

et en combinant (6) et (7) on aura alors

$$\Rightarrow N_1 = \frac{P}{1 + 2\cos^3 \alpha} \quad \text{et} \quad N_2 = N_3 = \frac{P\cos^2 \alpha}{1 + 2\cos^3 \alpha}$$
EXERCICES / chapitre 6

5.1 Déterminer la contrainte normale dans les deux sections de la barre cidessous, et l'allongement total ΔL sachant que $E = 2.0 \times 10^5$ N/mm².

✓ $-3.62 \ge 10^{-2} mm$

Fig. E5.1

5.2 Deux barres prismatiques sont co-axialement soudées et supportent une charge verticale de 45 kN. L'aire de la section de la barre en acier AB est de 6500 mm² et de densité 7.83 gr/cm³; les valeurs correspondantes de la barre en cuivre BC sont 5100 mm² et 8.30 gr/cm³.

Déterminer les contraintes maximales et minimales dans chaque barre.

✓ barreAB: 9.31, 8.82 N/mm²,

barreBC:8.07N/mm²,7.31 N/mm²

5.3 Les forces de compression et de traction maximales qu'une barre puisse supporter sont 15.4 kN et 6.6 kN respectivement. Si la longueur de cette barre est de 3.2 m et l'aire d'une section transversale est de 418 mm². déterminer la différence entre la longueur maximale et minimale de cette barre sachant que $E = 2.07 \times 10^5 \text{ N/mm}^2$.

✓ 0.81 mm

5.4 Une barre d'aluminium de 250 mm de long, a une section transversale carrée de 50 mm de coté. La barre est soumise à une tension qui provoque un allongement de 0.29 mm.

Déterminer le changement de température nécessaire pour que le volume de la barre reste inchangé. Le coefficient de Poisson de l'aluminium v = 0.33 et le coefficient de dilatation thermique $= 2.8 \times 10^{-5}$ /°C

5.5 Une barre d'acier de 50 mm de diamètre et de 200 mm de longueur, est libre à se déplacer à l'intérieur d'un tube cylindrique en cuivre d'épaisseur 3 mm.

Déterminer les contraintes qui se développent dans l'acier et le cuivre sous l'effet d'une compression de 100 kN. Les modules d'élasticité de l'acier et du cuivre sont 2.07×10^5 N/mm² et 0.90×10^5 N/mm² respectivement.

✓ 45.7 N/mm², 20.56 N/mm²

5.6 Une barre rigide ABC est suspendue par 3 câbles en acier ayant des longueurs initiales égales. Calculer les tensions des câbles sous l'effet du poids propre de la barre de 1.65 kN. Les aires des sections des câbles A, B et C sont respectivement 6 mm², 12 mm², et 18 mm². Le module d'élasticité de l'acier est 2.07×10^5 N/mm².

Quelle est l'intensité de la force verticale qu'il faut appliquer à une distance de 4.6 m de A pour que la barre ABC reste horizontale.

Fig. E5.6

5.7 Déterminer les contraintes normales provoquées dans les barres élastiques des systèmes représentés dans Fig. E5.7 par l'action des forces appliquées.

Le module d'élasticité est le même pour toutes les barres de la colonne (a).

✓ (a) -80, 80, 60; (b) 6.1, 8.7
 N/mm²

Fig. E5.7

5.8 Déterminer les efforts dans les barres extensibles des systèmes de la Fig. E5.8.

(Les barres hachurées sont infiniment rigides)

✓ (a)25 kN, (b) 25, 56.5 kN
(c)
$$N_c = 2PaL/(2a^2+b^2)$$
,
 $N_d = PbL/(2a^2+b^2)$
(d) $N_c = 5.36$ kN, $N_d = 5.15$ kN

66

Fig. E5.8

Chapitre 7 FLEXION

7.1 GENERALITES

L'action des forces latérales sur une poutre se traduit en une déformation de l'axe longitudinal initialement droit en une courbe curviligne (Fig. 7.1). L'état d'une section de poutre ou de toutes les composantes des efforts internes, seule un moment fléchissant M_y ou M_z n'est pas nul, est dit état de *flexion plane pure*. La déformation résultante de ce genre de sollicitation est connue sous le nom de la *flèche*. Lorsque l'effort tranchant n'est pas nul, en ce cas la sollicitation est dite *flexion simple*.

Dans le chapitre des efforts internes nous avons vu comment déterminer le diagramme des moments fléchissants le long de l'axe longitudinal d'une poutre d'une structure isostatique. Dans ce chapitre nous proposons d'étudier le passage de l'effort interne aux contraintes agissant sur les sections de la poutre et particulièrement la distribution des contraintes normales et tangentielles résultant d'une flexion et d'un effort tranchant.

7.2 CONTRAINTES NORMALES EN FLEXION PLANE

Des contraintes normales se développent dans les sections transversales d'une poutre soumise à un moment fléchissant. La Fig. 7.2 montre les fibres tendues et comprimées externes d'un tronçon de poutre fléchi. Dans la zone comprimée les fibres se raccourcissent tandis que dans la zone de traction elles s'allongent. Ces deux zones sont séparées par un plan neutre ayant un rayon de courbure R et dont la longueur ne varie pas lors de la flexion. L'allongement relatif d'une fibre se trouvant à une distance y de l'axe neutre peut être écrit:

La condition d'équilibre qui lie les contraintes et les efforts internes dans la section transversale d'une poutre est :

$$M = \iint_{s} \frac{E}{R} y^{2} ds \qquad (7-7) \qquad Fig. 7.3$$
$$M = \frac{E}{R} \iint_{s} y^{2} ds \qquad (7-8)$$

$$M = \frac{EI_Z}{R}$$
(7-9)

En introduisant l'équation (7-5) dans (7-9), la contrainte normale en tout point de la section de la poutre distante de y de l'axe x a pour valeur:

$$\sigma = \frac{My}{I_Z}$$
(7-10)

70 RESISTANCE DES MATERIAUX DE BASE

L'équation (7-10) est appelée formule de Navier dont on note que:

✓ Les contraintes sont proportionnelles au moment fléchissant et inversement proportionnelles au moment d'inertie I.

✓ Les contraintes varient linéairement avec la distance y de l'axe neutre.

✓ La fibre la plus sollicitée (la contrainte de traction ou de compression maximale) est située au point le plus éloigné de l'axe neutre.

L'application de cette formule est générale, mais on ne considérera que les cas particuliers suivants:

1-Cas d'une section ayant un axe de symétrie horizontal :

$$y_{max} = y_{max}^{+}$$
(7-11)

$$\left|\sigma_{\max}^{-}\right| = \left|\sigma_{\max}^{+}\right| = \sigma_{\max} = \frac{My_{\max}}{I_{x}}$$
(7-12)

 σ_{\max} : La contrainte normale maximale.

$$W_y = \frac{I_x}{Y_{max}} = \frac{I_x}{h/2}$$
 : Module résistant de la section.

2-Cas d'une section n'ayant pas un axe de symétrie horizontal :

Dans ce cas les contraintes de traction et de compression maximales sont différentes.

Fig. 7.5

Flexion 71

$$\left|\sigma_{\max}^{-}\right| = \left|\frac{My_{\max}^{-}}{I_{x}}\right| \tag{11-13}$$

$$\sigma_{\max}^{+} = \frac{My_{\max}^{+}}{I_x}$$
(11-14)

 σ_{\max}^- : Contrainte de compression max.

 σ_{\max}^+ : Contrainte de traction max.

 y_{max}^- et y_{max}^+ : Distances des fibres comprimées et tendues les plus éloignées.

M : Moment fléchissant.

D'où on distingue 2 modules résistants de la section : $\frac{Y_{max}^+}{I_x}$ $\frac{Y_{max}^-}{I_x}$

7.3 CALCUL DE RESISTANCE EN FLEXION

La vérification d'une poutre en flexion se fait à partir de la condition de résistance par rapport aux contraintes normales maximales dans la section.

a) Pour une section symétrique:

$$\left|\sigma_{\max}\right| = \left|\frac{My_{\max}}{I_z}\right| \le \min([\sigma_-], [\sigma_+])$$
(11-15)

b) Pour une section non symétrique

Si
$$[\sigma_{-}] = [\sigma_{+}] = [\sigma] \Rightarrow \max(|\sigma_{\max}^{-}|, |\sigma_{\max}^{+}|) \le [\sigma]$$
 (11-16)

Si
$$[\sigma_{-}] \neq [\sigma_{+}]$$

$$\begin{vmatrix} \sigma_{\max}^{-} \\ | \leq [\sigma_{-}] \\ | \sigma_{\max}^{+} | \leq [\sigma_{+}]. \end{vmatrix}$$
(11-17)

7.4 APPLICATIONS

Exemple 1

Vérifier la résistance de la poutre ci-dessous si la contrainte admissible $[\sigma]=160 \text{ N/mm}^2$.

Solution:

Les démarches:

-Construire le diagramme des moments

-Déterminer la section dangereuse

72 RESISTANCE DES MATERIAUX DE BASE

-Calculer la contrainte maximale 40kN/m -Comparer cette contrainte avec $[\sigma]$. 12 cm Le moment maximal est à mi-travée: 6 cm 2 m $M_{max} = \frac{ql^2}{8} = \frac{40 \times 4}{8} = 20 \text{kN.m}$ |||||1 Amax $I_z = \frac{60 \times 120^3}{12} = 860 \times 10^4 \text{ mm}^2$ Fig. 7.7 $\sigma_{\text{max}} = \frac{M_{\text{max}} y_{\text{max}}}{I_{z}} = \frac{2 \times 10^{6} \times 60}{864 \times 10^{4}} = 138.8 \text{ N} / \text{mm}^{2} < 160 \text{ N} / \text{mm}^{2}$

Exemple 2

$$Iz = 2 \times 106 \text{ mm}^4$$
 [σ_{-}] = 80 N/mm²
h = 160 mm [σ_{+}] = 120 N/mm²

$$y_{G} = 60 \text{ mm}$$

Solution

-Contraintes :

Pour

-Diagramme des moments :

$$\implies M_{max}^{+} = 10 \text{kN.m}$$
$$M_{max}^{-} = 20 \text{ kN.m}$$

Fig. 7.8

 $\sigma_{\max}^{+} = \frac{10 \times 10^5 \times 60}{2 \times 10^6} = 30 < 120$

 $M_{max}^+ = 10 k N.m$

et pour $M_{max}^- = 20 k N.m$

$$\sigma_{\rm max}^{+} = \frac{20 \times 10^5 \times 100}{2 \times 10^6} = 100 \, \text{N} \, / \, \text{mm}^2 < 120$$

$$\left|\sigma_{\max}^{-}\right| = \frac{20 \times 10^5 \times 60}{2 \times 10^6} = 60 \text{ N/mm}^2 < [\sigma_-]$$

$$\left|\sigma_{\max}^{-}\right| = \frac{10 \times 10^{5} \times 100}{2 \times 10^{6}} = 50 < [\sigma_{-}]$$

7.5 CONTRAINTES TANGENTIELLES EN FLEXION

Quand une poutre est soumise à l'action simultanée d'un moment fléchissant et d'un effort tranchant, en plus des contraintes normales, des contraintes tangentielles apparaissent aussi au niveau des sections droites. Aux contraintes tangentielles d'un élément unitaire Fig.7.10 sont associées des contraintes tangentielles égales sur les facettes horizontales (réciprocité des contraintes tangentielles). L'existence de ces contraintes suivant les couches horizontales de la poutre peut être démontré par superposition de deux poutres de hauteur h simplement appuyées aux extrémités et soumises à une force concentrée à mitravée Fig. 7.11. On constate qu'il y a un glissement des fibres inférieures ce qui signifie qu'il y a des contraintes tangentielles horizontales empêchant ce glissement dans le cas d'une poutre équivalente de hauteur 2h.

Fig. 7.10

Fig. 7.11

74 RESISTANCE DES MATERIAUX DE BASE

Considérons un tronçon de poutre de longueur dx soumis à un effort tranchant constant T et un moment fléchissant variant de M à M+dM.(Fig. 7.12)

Fig. 7.12

La partie supérieure de l'élément dx à une distance y_1 de l'axe neutre est en équilibre sous l'action des contraintes σ à gauche de l'élément dx, σ +d σ à droite de l'élément et de la contrainte tangentielle horizontale τ .

Ecrivons l'équation d'équilibre:

$$\iint_{\mathrm{Sl}} \sigma \mathrm{ds} - \iint_{\mathrm{Sl}} (\sigma + \mathrm{d}\sigma) \mathrm{ds} + \int \tau \mathrm{b} \mathrm{dx} = 0 \tag{11-18}$$

En supposant que les contraintes tangentielles sont constantes dans la section bdx:

$$\tau bdx = \iint_{S1} d\sigma ds = \iint_{S1} \frac{dM}{I} yds$$
(11-19)

$$=\frac{\mathrm{d}M}{\mathrm{I}}\iint_{\mathrm{S1}}\mathrm{yds}\tag{11-20}$$

$$=\frac{\mathrm{dM}}{\mathrm{I}}\mathrm{S}_{1}^{*} \tag{11-21}$$

$$\Rightarrow \tau = \frac{\mathrm{dM}}{\mathrm{dx}} \frac{\mathrm{S}_{1}^{*}}{\mathrm{Ib}} = \frac{\mathrm{TS}_{1}^{*}}{\mathrm{Ib}}$$
(11-22)

En un point arbitraire d'une section droite d'une poutre soumise à l'action simultanée d'un effort tranchant et d'un moment fléchissant, la valeur de la contrainte tangentielle est déterminée par:

$$\tau = \frac{\mathrm{TS}_{z}}{\mathrm{I}_{z}\mathrm{b}} \tag{11-23}$$

Avec:

 τ : Contrainte tangentielle.

b : Largeur de la section dans la couche considérée.

I_Z: Moment d'inertie.

 S_{Z}^{*} : Moment statique de l'aire située soit au-dessous soit au-dessus de la couche considérée.

T: L'effort tranchant.

La contrainte tangentielle varie avec l'ordonné y comme le rapport S_{Z}^{*}/b . τ est nul aux points les plus éloignés du centre de gravité et passe par un maximum pour l'ordonnée correspondant au maximum de S_{Z}^{*}/b .

7.5.1 Poutre à section rectangulaire

Dans le cas d'une section rectangulaire (Fig. 7.13), la largeur b est constante. A une distance y de l'axe z-z on détermine le moment statique S^* et le moment quadratique I_z . La formule (11-23) devient :

$$S_1 = \frac{b}{2} \left(\frac{h^2}{4} - y^2 \right)$$
 (11.24)

$$I_z = \frac{bh^3}{12}$$

On obtient:

$$\tau = \frac{6T}{bh^3} (\frac{h^2}{4} - y^2)$$
(11-25)

y = 0
$$\tau_{max} = \frac{3}{2} \frac{T}{bh}$$

y = h/2 $\tau_{min} = 0$

y = h/2 $\tau_{\min} = 0$

7.5.2 Poutre à section circulaire

$$S_{1} = \frac{2}{3} (R^{2} - y^{2})^{3/2} \text{ (Variation parabolique).}$$

$$I_{z} = \frac{\pi R^{4}}{4} \quad , \quad b = \sqrt{R^{2} - y^{2}}$$

$$D'où \ \tau = \frac{4T}{3\pi R^{4}} (R^{2} - y^{2}) \quad (11.28) \qquad y$$

$$\Rightarrow \tau_{max} = \frac{4T}{3\pi R^{2}} \text{ pour } y = 0 \quad (11.29)$$

$$\tau_{min} = 0 \quad \text{pour } y = R$$

Fig. 7.13

7.5.3 Poutre à section triangulaire

b

y = 2h/3 ou y = -h/3 $\tau_{\min} = 0$

7.6 CALCUL DE RESISTANCE EN FLEXION SIMPLE

Dans le cas général d'une poutre en flexion simple, les valeurs maximales des contraintes normales et celle des contraintes tangentielles se trouvent en des points différents. Dans les points où σ est maximale $\tau = 0$, par contre là ou τ est maximale $\sigma = 0$.

D'habitude on vérifie les contraintes normales et tangentielles séparément.

Comme le cas d'une flexion pure, la condition de résistance s'écrit:

$$\left|\sigma_{\max}\right| = \frac{M_{\max}y}{I} \le [\sigma] \tag{11-31}$$

On devra aussi vérifier:

$$\tau_{\max} = \frac{T_{\max} S_{\max}^*}{bI} \le [\tau]$$
(11-32)

Cependant dans le cas où dans des sections de poutre il existe des points supportant l'action simultanée d'importantes contraintes normales et tangentielles, il convient de vérifier la résistance de la poutre par rapport aux contraintes principales, en utilisant les diverses théories de résistance.

7.7 APPLICATION

Construire le diagramme des contraintes tangentielles de la section rectangulaire creuse de la Fig. 7.16.

Solution

Pour tracer le diagramme des contraintes on calcule les contraintes tangentielles aux limites des zones de variation brutale et on joint les points de discontinuités par des segments de droites et par des paraboles quadratiques entre les points où la variation est exprimée par la formule:

$$\tau = \frac{\mathrm{TS}^*}{\mathrm{I_z}b}$$

Source: www.almohandiss.com

76

Flexion 77

$$T = 80 \text{ kN}$$

$$\tau = \frac{TS^*}{I_z b}$$

$$I = \frac{1}{12} (6 \times 12^3 - 4 \times 8^3) = 693.3 \text{ cm}^4$$

Point 1:

$$S^*{}_1 = 0 \Longrightarrow \tau_1 = 0$$

$$S_1^* = 0 \Longrightarrow \tau_1 =$$

Point 2: largeur b = 6 cm

$$S_{2}^{*} = 6 \frac{12 - 8}{2} \left(\frac{12}{2} - \frac{12 - 8}{4}\right) = 60 \text{ cm}^{3}$$
$$\Rightarrow \tau_{2} = \frac{80 \times 10^{3} \times 60 \times 10^{3}}{693.3 \times 10^{4} \times 60} = 11.54 \text{ N/mm}^{2}$$

Point 3: même point avec b = 6 - 4 = 2 cm (discontinuité de la section)

$$S_3^* = S_2^* \implies \tau_3 = \tau_2 \frac{6}{6-4} = 34.6 \text{ N/mm}^2$$

Point 4: milieu de la section

$$S_4^* = S_2^* + (6-4)\frac{8}{2} \times \frac{8}{2} = 76 \text{cm}^3$$
$$\tau_4 = \frac{80 \times 10^3 \times 76 \times 10^3}{2 \times 693.3 \times 10^4} = 43.9 \text{ N/mm}^2$$

RESISTANCE DES MATERIAUX DE BASE

EXERCICES / chapitre 7

7.1 Une poutre d'égale résistance en flexion, est une poutre soumise à des contraintes admissibles égales en toute section, sous un chargement donné.

On demande la loi de variation de la hauteur d'une poutre console d'égale résistance en flexion, dont les sections sont rectangulaires et de largeur constante, soumise à une force concentrée à son extrémité.

-Même question pour une poutre sur deux appuis simples soumise à une charge uniformément répartie.

 $\checkmark h^2 = 6Px / b[\sigma], h^2 = 3Px(L-x) / b[\sigma]$

7.2 Déterminer le moment fléchissant de résistance maximal d'une poutre en T soumise à une flexion simple, sachant que la largeur de la semelle est de 150 mm, la hauteur totale de la section est de 150 mm et l'épaisseur de l'âme et de la semelle est de 12 mm. La contrainte admissible de tension ou de compression est de 155 N/mm².

Quelle est la valeur maximale d'une force concentrée à mi-travée d'une poutre de 4 m de long et simplement appuyée aux extrémités.

✓ 10.75 kN.m, 10.75 kN

7.3 Un aqueduc en tôle d'acier d'épaisseur 12 mm a une forme en U de 300 mm de hauteur et 600 mm de largeur extérieure. La ligne est constituée de plusieurs travées de 9.0 m simplement appuyées. Vérifier la résistance de l'aqueduc pour une hauteur d'eau de 250 mm, sachant que la densité de l'acier est de 7.68 g/cm³ et $[\sigma] = 155$ N/mm².

 $\checkmark \sigma_{max} = 43.62 \text{ N/mm}^2$

7.4 Un barrage temporaire est construit par des planches (A) renforcées par des montants encastrés à la base et distants de 0.8 m l'un par rapport à l'autre.

Déterminer la dimension minimale des sections carrées des montants (B) pour une hauteur maximale d'eau de 2 m sachant que la contrainte admissible du bois des montants est de 80 N/mm².

. 199

Fig. E7.4

7.5 Une section rectangulaire de 100 mm de hauteur et 12 mm de largeur est soumise à un effort tranchant de 20 kN suivant la hauteur de la section.

a) Calculer la contrainte tangentielle maximale, b) La contrainte tangentielle sur une bande située à 25 mm de la base de la section.

25 N/mm² 18.75 N/mm²

78

7.6 Une poutre en bois de section rectangulaire est simplement appuyée aux extrémités. Sachant que $[\sigma] = 12 \text{ N/mm}^2 \text{ et}$

 $[\tau] = 1 \text{ N/mm}^2$, déterminer le rapport de la portée de la poutre sur la hauteur de la section qui permet à une force appliquée à mi-travée de provoquer à la fois des contraintes tangentielles et normales admissibles.

✓ 6

7.7 Une poutre en U de 120 mm de profondeur, 60 mm de largeur, 12 mm d'épaisseur des semelles et 8 mm de l'âme est soumise à un effort tranchant de 50 kN. Tracer le diagramme de la distribution des contraintes tangentielles dans la section.

✓ distribution linéaire de 0 à
 44.6 N/mm² le long de la semelle

distribution parabolique 59.9 à 81.4 N/mm² (maximum) le long de l'âme

7.8 On veut réaliser une poutre console à l'aide de deux pièces en bois identiques (Fig. E7.8).

On demande de calculer l'espacement des boulons d'assemblage nécessaire pour obtenir la même résistance à la flexion que pour une poutre d'un seul tenant (à la présence des trous de boulons prés).

On utilisera des boulons de diamètre de 16 mm (une seule file sur la largeur), ayant pour taux de cisaillement admissible

 $[\tau] = 156 \text{ N/mm}^2.$

🗸 🛛 209 mm

Chapitre 8 CISAILLEMENT

8.1 GENERALITES

Dans le chapitre précèdent nous avons étudié les contraintes tangentielles engendrées par un effort tranchant en présence d'un moment fléchissant. Nous allons maintenant considérer les contraintes tangentielles dues à l'effort tranchant seul.

Ces contraintes tendent à cisailler la section et provoquent ainsi des déformations angulaires. Si en pratique il est difficile de séparer les sollicitations les une des autres, il est encore plus difficile de réaliser des déformations de cisaillement dans sa forme pure, elles sont généralement accompagnées de déformations de flexion. Cependant les exemples considérés comme étant en cisaillement pur sont nombreux: les composants des assemblages métalliques constituent la majorité. La Fig. 8.1 représente un joint boulonné.

Fig. 8.1

8.2 CALCUL DES CONTRAINTES DE CISAILLEMENT

Considérons le cas d'un tronçon de poutre à deux forces comme le montre la Fig. 8.2.

Nous avons l'effort tranchant:

$$T = F \tag{8-1}$$

F

Et la relation entre l'effort tranchant et la contrainte tangentielle agissant sur la face de la section s'écrit:

$$T = \iint_{s} \tau ds \tag{8-2}$$

Pour une distribution uniforme des contraintes sur le plan de la section l'équation s'écrira donc:

ou d'après (8-1) $\tau = \frac{F}{A}$

En réalité les contraintes tangentielles ne sont pas uniformément réparties sur le plan de la section car elles s'annulent aux voisinages des faces supérieures et inférieures d'après la loi de parité. Cependant la formule (8-5) est largement utilisée pour le calcul des assemblages boulonnés rivetés ou soudés.

8-3 ETAT DE CISAILLEMENT PUR

Dans l'état de contrainte de cisaillement pur, les contraintes principales suivant les plans inclinés à 45° sont:

$$\sigma_1 = -\sigma_2 = \tau \tag{8-6}$$

8-4 CALCUL DE RESISTANCE EN CISAILLEMENT PUR

Le calcul de cisaillement pur consiste à déterminer la contrainte tangentielle τ_{max} dans l'élément le plus sollicité et comparer cette valeur avec la contrainte admissible. La condition de résistance au cisaillement s'écrit sous la forme:

 $\tau \le [\tau] \tag{8-7}$

La contrainte de cisaillement admissible est déterminée en fonction de la contrainte normale admissible qui est une caractéristique du matériau. Pour cela on établit les critères de résistance aux contraintes principales qui apparaissent en cisaillement pur définies par l'équation (8-6).

D'après la première théorie de résistance :

$$\sigma_{1} = \tau \leq [\tau]$$

$$\Rightarrow [\tau] = [\sigma]$$
D'après la deuxième théorie
$$\sigma_{1} - \nu \sigma_{2} \leq [\sigma]$$
(8-9)

 $\tau + \nu \tau \leq [\sigma]$

$$\tau \leq \frac{[\sigma]}{1+\nu}$$
$$\Rightarrow [\tau] = \frac{[\sigma]}{1+\nu}$$
(8-10)

Pour les métaux: v = 0.25 à 0.42 \Rightarrow $[\tau] = (0.7, 0.8) [\sigma]$

D'après la troisième théorie

$$\sigma_{1} - \sigma_{2} \leq [\sigma]$$

$$\tau + \tau \leq [\tau]$$

$$\tau \leq \frac{[\sigma]}{2}$$

$$\Rightarrow [\tau] = \frac{[\sigma]}{2}$$
(8-11)

D'après la quatrième théorie

$$\sqrt{\sigma_1^2 + \sigma_2^2 - \sigma_1 \sigma_2} \le [\sigma]$$

$$\tau \le \frac{[\sigma]}{\sqrt{3}}$$

$$\Rightarrow [\tau] = \frac{[\sigma]}{\sqrt{3}} \approx 0.6[\sigma]$$
(8-12)

Notons que lors du calcul des éléments en matériaux ductiles (boulons, rivets,...etc.) Cette dernière formule est la plus utilisée.

8-5 APPLICATION

Deux bandes d'acier sont assemblées par 2 rivets comme le montre la Figure 8.4. vérifier la résistance de l'assemblage.

$$[\sigma] = 100 \text{N/mm2} \quad (\text{plaque})$$
$$[\sigma] = 80 \text{N/mm}^2 \quad (\text{rivets})$$

Solution:

1) Les rivets: -

Effort tranchant au niveau de chaque section de rivet:

$$T = \frac{P/2}{2} = \frac{P}{4}$$

Contrainte tangentielle:

Fig. 8.4

$$\tau = \frac{T}{S} = \frac{4T}{\pi d^2} = \frac{P}{\pi d^2} = \frac{5 \times 10^4}{\pi (20)^2} = 39.8 \,\text{N/mm}^2 < 0.6 \times 80 = 48 \,\text{N/mm}^2$$

2/ La plaque:

La section nette:

 60×10 - $2 \times 10 \times 20 = 200 \text{ mm}^2$

$$\sigma = \frac{N}{S_{\text{nette}}} = \frac{5 \times 10^4 / 2}{200} = 125 \text{ N} / \text{ mm}^2 > 100 \text{ N} / \text{ mm}^2$$

Quelle est donc b_{min} pour que la plaque résiste?

S_{nette} = 10b -400

$$\frac{P/2}{10b - 400} ≤ [σ]$$
⇒ (10b - 400) = 2.5 × 10⁴
⇒b_{min} = $\frac{2.5 × 10^4 + 4 × 10^4}{10 × 100} = 65$ mm

84 RESISTANCE DES MATERIAUX DE BASE

EXERCICES / chapitre 8

7.1 Calculer le nombre de rivets de 10 mm de diamètre nécessaire pour assembler la pièce de la Fig. E7.1, sachant que $[\sigma] = 100 \text{ N/mm}^2$

44 rivets

Fig. E7.1

7.2 Vérifier la résistance de l'assemblage de la Fig. E7.2 sachant que

 $[\sigma] = 100 \text{ N/mm}^2$ pour la plaque et $[\sigma] = 80 \text{ N/mm}^2$ pour les rivets.

✓ 159.2 N/mm², 250 N/mm²

Fig. E7.2

7.3 Pour percer des trous dans une tôle en aluminium de 4 mm d'épaisseur, on utilise une poinçonneuse ayant une aiguille de 20 mm de diamètre. Quelle force faut-il appliquer au niveau de l'aiguille (Fig. E.73) pour percer la tôle si la contrainte admissible de l'aluminium est de 275 N/mm².

$$P = 69 N$$

Fig. E7.3

7.4 L'adhérence d'une barre d'acier au béton est déterminée par un 'teste d'arrachement' (Fig. E7.4). Pour arracher une barre de diamètre d = 12 mm et de longueur enrobée L = 300 mm, on doit exercer une force de traction P = 17.8 kN, quelle est la contrainte d'adhérence acierbéton.

✓ 1.57 N/mm²

Chapitre 9 TORSION

9.1 GENERALITES

Si de tous les efforts internes seul le moment M_X est présent, il provoque une torsion. Ce type de sollicitation est très répandu dans les structures de

mécanique et surtout au niveau des arbres traînés par les moteurs. L'analyse des éléments des structures de génie civil soumis à la torsion est moins fréquente car l'existence du moment de torsion entraîne que les forces extérieures doivent obligatoirement appartenir à un plan perpendiculaire à celui de l'élément, et cela n'est pris en compte que lors de l'analyse des structures en 3-dimensions, comme par exemple l'installation de tuyauterie d'un système de refroidissement d'une centrale nucléaire ou d'une base de pompage de pétrole (Fig. 9.1).

9.2 CONTRAINTES ET DEFORMATION

Lorsqu'on sollicite en torsion une poutre circulaire, on constate qu'une section quelconque tourne dans son plan d'un angle proportionnel à son abscisse. Si l'angle de rotation est petit, alors la longueur de la barre et le rayon de la section restent inchangés.

De plus, une ligne longitudinale sur la surface de la barre a-b tourne d'un petit angle vers la position ab', On constate qu'un élément rectangulaire

γ Mx φ

infinitésimal sur la surface de la barre de longueur dx se déforme en parallélogramme. L'angle de la déformation γ est appelé: distorsion exprimé par:

а

с

а

с

γ

dx

Fig. 9.3

Mx

dφ

b

b'

d

ď

86 RESISTANCE DES MATERIAUX DE BASE

$$tg\gamma = \frac{bb'}{ab}$$
(9-1)

$$bb' = rd\phi$$
 et $ab = dx$

En tenant compte du fait que l'angle γ est petit on assimilera tgy à γ et on obtient alors:

$$\gamma = r \frac{\mathrm{d}\varphi}{\mathrm{d}x} \tag{9-2}$$

 $\frac{\mathrm{d}\varphi}{\mathrm{d}x}$ est la rotation relative analogue

à $\frac{\Delta L}{L}$: déformation relative longitudinale.

ongituamate.

D'après la loi de Hooke au cisaillement:

$$\tau = G \gamma \tag{9-3}$$

$$\Rightarrow \tau = \operatorname{Gr} \frac{\mathrm{d}\varphi}{\mathrm{d}x} \tag{9-4}$$

La relation entre le moment de torsion et l'angle φ peut être obtenue sachant que les contraintes tangentielles τ réparties sur la section sont statiquement équivalentes à un couple égal et opposé au couple de torsion M_x :

(9.6)

Finalement, la relation entre le moment de torsion et l'angle

$$M_x = G \frac{d\varphi}{dx} \int_{s} r^2 ds$$
(9-7)

On reconnaît dans cette expression le moment quadratique polaire:

Torsion 87

$$I_{p} = \int_{s} r^{2} ds \tag{9-8}$$

D'où l'expression de la déformation angulaire relative:

$$\frac{\mathrm{d}\varphi}{\mathrm{dx}} = \frac{\mathrm{M}}{\mathrm{GI}_{\mathrm{p}}} \tag{9.9}$$

La quantité GI_p est la rigidité à la torsion.

En remplaçant $\frac{d\varphi}{dx}$ par sa valeur dans l'expression (9-4), on obtient:

$$\tau = \frac{M_x r}{I_p} \tag{9.10}$$

Cette formule montre que les contraintes sont proportionnelles à la distance du point considéré au centre de gravité de la section. On peut alors tracer le graphe de répartition de la contrainte dans une section. La contrainte tangentielle est maximale sur les fibres extérieures:

Pour r = R
$$au_{max} = \frac{M_x R}{I_p}$$
 (9-11)

La quantité $W_p = \frac{I_p}{R}$ est appelée *module de torsion*.

L'angle de rotation d'une poutre de longueur L peut être obtenue de l'expression (9-9):

$$\varphi = \int_{0}^{L} \frac{M_x}{GI_p} dx$$
(9-12)

Si la forme de la section et le moment sont constants alors:

. . .

$$\varphi = \frac{M_x L}{GI_p}$$
 (le glissement d'une extrémité par rapport à l'autre)

9.3 TORSION DES BARRES DE SECTION RECTANGULAIRES

L'hypothèse des sections planes ne peut être admis lors de la torsion des sections non-circulaires et donc les méthode de la résistance des matériaux ne peuvent pas être appliquées.

Dans ce paragraphe, on utilisera les formules obtenues par les méthodes de la théorie d'élasticité pour le cas des sections rectangulaires.

88 RESISTANCE DES MATERIAUX DE BASE

La distribution des contraintes d'une section rectangulaire est représentée dans la figure ci-dessous (Fig. 9-5) et la contrainte maximale est donnée par la formule:

$$\varphi = \frac{M_x L}{GI_t}$$
(9-17)

Avec $I_t = \eta hb^3$

Les coefficients α , β et η sont donnés en fonction du rapport h/b dans le tableau suivant:

h/b	1.00	1.50	1.75	2.00	2.50	3.00
α	0.208	0.231	0.239	0.246	0.256	0.267
β	1.000	0.859	0.820	0.795	0.766	0.753
η	0.141	0.196	0.214	0.229	0.249	0.263

9.4 CALCUL DE RESISTANCE A LA TORSION

En plus de la condition de résistance, lors du calcul des barres à la torsion, on vérifie aussi la condition de rigidité. Les deux conditions s'écrivent donc:

$$\tau_{\max} = \frac{M_x}{W_t} \le [\tau]$$
$$\varphi_{\max} = \frac{M_x L}{GI_t} \le [\varphi]$$

On admet généralement $[\phi] = 0.3 \circ / 1 m$ de longueur

9.5 APPLICATION

Vérifier la résistance et la rigidité de la barre ci-dessous sachant que le diamètre d = 100 mm, $G = 8 \times 10^4$ N/mm², $[\tau] = 0.7$ $[\sigma] = 40$ N/mm², et $[\phi]/L = 0.3$ °/m.

4 kN.m/m

Torsion 89

4 kN.m

2 kN.m

On trace le diagramme du moment de torsion pour déterminer la valeur maximale.

Vérification à la résistance:

$$W_{t} = \frac{I_{p}}{d/2} = \frac{\pi d^{4}}{32 \times d/2} = \frac{\pi}{16} d^{3}$$
$$\tau_{max} = \frac{6 \times 16 \times 10^{6}}{\pi \times 10^{6}} = 30.57 \,\text{N/mm}^{2} < [\tau]$$

Vérification à la rigidité

$$\varphi = \int_{0}^{x} \frac{M_{x}}{GI_{t}} dx$$

avec:

$$G = 8 \times 10^4 \text{ N/mm}^2$$

 $I_p = 0.1 \ (100)^4 = 0.1 \times 10^8 \text{ mm}^4$

Comme le moment n'est pas constant le long de la barre, on détermine dans chaque tronçon la loi de variation de l'angle de rotation et on déduit la valeur maximale.

Tronçon I:

$$M = 4x - 6$$

$$\varphi = \frac{1}{GI_p} \int_0^x (4x - 6) dx = \frac{1}{GI_p} (2x^2 - 6x)$$

$$\varphi(0) = 0 \quad \text{et} \quad \varphi(2) = -4/GI_p$$

$$\varphi' = 0 \implies x = 1.5 \text{ m} \implies \varphi_{\text{max}} = \frac{-4.5 \times 10^{-3} \times 10^{-6}}{8 \times 0.1 \times 10^{-8} \times 10^{-4}} = 5.63 \times 10^{-3} < [\varphi]$$

$$0.6 \text{ kN.m} \qquad 0.4 \text{ kN.m} \qquad 1.8 \text{ kN.m} \qquad 1.6 \text{ kN.m} \qquad 0.4 \text{ kN.m} \qquad 1.8 \text{ kN.m} \qquad 1.6 \text{ kN.m} \qquad$$

Fig. E9.1

Tronçon II:

$$M = -2 \text{ kN.m}$$

$$\varphi^{II} = \frac{1}{GI_p} \int_0^x - 2dx = \frac{-2x}{GI_p}$$

$$\varphi^{II}(x = 0) = \varphi^I(2) = 5.63 \times 10^{-3}$$

$$\varphi^{II}(x = 1) = -5.63 \times 10^{-3} - \frac{2 \times 10^6 \times 10^3}{8 \times 10^4 \times 0.1 \times 10^8} = -7.5 \times 10^{-3}$$

EXERCICES / chapitre 9

9.1 Déterminer d, a, b et h sachant que $[\tau] = 60 \text{ N/mm}^2$ et h/b = 2.

✓ d = 13.7 mm, a = 13.4 mm, b = 37.8 mm,h = 75.6 mm

9.2 Vérifier la résistance et la rigidité du tube de la Fig. E9.2, sachant que $[\tau] = 70 \text{ N/mm}^2$, $[\phi] = 0.3^\circ$ et G = $0.8 \times 10^5 \text{ kN/mm}^2$

 $\checkmark \tau_{max} = 67.9 \, \text{N/mm}^2$,

 $\phi = 1.945^{\circ} > [\phi].$

9.3 Les deux barres tubulaires de la Fig. E9.3. ont les même caractéristiques: longueur, épaisseur, aire de la section, matériau et sont sollicitées par des moments de torsion de même grandeur, évaluer les rapports des contraintes tangentielles et des angles de torsion pour ces deux barres. (utiliser les formules de Bredt pour les sections à parois fermées minces)

$$\checkmark \frac{\tau_1}{\tau_2} = \frac{\pi}{4}, \qquad \frac{\phi_1}{\phi_2} = 0.617$$

Fig. E 9.3

9.4 Un arbre de 50 mm de diamètre est solidaire à un tube de 100 mm de diamètre extérieur. L'assemblage comme le montre la Fig. E9.4 est assuré par 10 boulons sur une circonférence de 250 mm de diamètre.

Déterminer le diamètre intérieur du tube et celui des boulons pour pouvoir transmettre le moment maximale de l'arbre, sachant que ce dernier a une contrainte tangentielle admissible de 50 N/mm² et celle des boulons est de 25 N/mm².

Fig. E9.4

9.5 Une barre de 20 mm de diamètre et 1 m de long est encastrée à ses extrémités. A une distance de 250 mm de l'une des extrémités, on applique un moment de torsion qui provoque une contrainte tangentielle maximale dans le matériau de 35 N/mm².

Calculer l'intensité du moment de torsion et l'angle de rotation au point d'application du moment. On donne $G = 76 \text{ kN/mm}^2$.

✓ 73.3 N.m, 0.67°

Chapitre 10 SOLLICITATIONS COMPOSEES

10.1 INTRODUCTION

Pour simplifier l'étude des effets des sollicitations, nous avons jusqu'ici considéré les différentes sollicitations séparément. Dans le cas général une section peut être soumise à l'action des six composantes de l'effort internes à savoir (N, T_x , T_y , M_x , M_y , M_z) et qui ont été classées sous quatre catégories de sollicitation ou déformation simple: traction et compression (N), cisaillement (T_x , T_y) torsion M_x et flexion M_y , M_z . Dans la pratique courante, on rencontre rarement des cas où les sollicitations sont simples moins encore ou les six composantes des efforts internes apparaissent en même temps au niveau d'une section.

On rencontre, cependant, différents types de leurs combinaisons. Sous les hypothèses de la résistance des matériaux ces combinaisons peuvent être analysées en utilisant le principe de superposition des efforts. Dans ce chapitre on étudiera la combinaison de deux flexions dite *flexion déviée* et la combinaison de la flexion déviée avec la traction ou la compression communément appelée *flexion composée*.

10.2 FLEXION DEVIEE

La flexion déviée est le résultat de l'action des forces extérieures agissant suivant un plan différent de ceux des axes principaux de la poutre. Par exemple une panne d'une toiture inclinée soumise à une charge verticale (Fig. 10.1).

Fig. 10.1

L'étude de la flexion déviée revient à décomposer les sollicitations en deux flexions planes suivant les plans principaux.

Fig. 10.2

Pour une action simultanée de M_y et M_z , les contraintes en un point de coordonnées y et z se déterminent par la formule :

$$\sigma = \frac{M_Y}{I_Y}z + \frac{M_Z}{I_Z}y$$
(10-1)

Ce résultat est établi directement en considérant que la flexion déviée comme la somme de deux flexions dirigées suivant les axes centraux d'inertie et en appliquant le principe de superposition.

L'axe neutre, défini par $\sigma = 0$, a pour équation:

$$\Rightarrow \frac{M_y}{I_y} z + \frac{M_z}{I_z} y = 0 \Rightarrow y = -\frac{M_y}{M_z} \times \frac{I_z}{I_y} z$$
(10-2)

En flexion déviée due à une charge inclinée de α par rapport à l'axe oy on a les relations :

$$M_{y} = M \cos \alpha$$

$$M_{z} = M \sin \alpha$$
(10-3)

Où M est le moment suivant un axe orienté de α par rapport à y-y.

La tangente de l'axe neutre s'écrit alors:

$$tg\beta = -\frac{M_y}{M_z} \times \frac{I_z}{I_y} = -ctg\alpha \frac{I_z}{I_y}$$
(10-4)

Et l'expression (10-1) peut être mise sous la forme:

$$\Rightarrow \sigma = M(\frac{Z\cos\alpha}{I_y} + \frac{Y\sin\alpha}{I_z})$$
(10-5)

10.2.1 Vérification à la résistance

Le calcul de vérification de la résistance s'effectue à la base des données sur la contrainte totale maximale.

D'après la formule (10-1) les contraintes maximales se localisent aux points les plus éloignés de l'axe neutre. Pour une section symétrique on a:

$$\sigma_{\max} = \left| M_{\max} \left(\frac{Y_{\max} \sin \alpha}{I_Z} + \frac{Z_{\max} \cos \alpha}{I_Y} \right) \right| \le [\sigma_+]$$
(10-6)

$$\sigma_{\min} = -\left| M_{\max} \left(\frac{Y_{\max} \sin \alpha}{I_z} + \frac{Z_{\max} \cos \alpha}{I_y} \right) \right| \le [\sigma_{-}]$$
(10-7)

10.2.2 Application 1

Dimensionner une poutre d'un toit simplement appuyée de longueur L = 4 m. Le rapport $\frac{h}{b} = 2$, l'angle entre le toit et l'horizontale est de 25°. La charge verticale q = 0.4 kN/m est répartie sur toute la longueur. on donne $[\sigma] = 10N/mm^2$, et E = 10^4 N/mm².

Solution

$$\sigma_{\max} = M_{\max} \left(\frac{y_{\max}}{I_Z} \sin \alpha + \frac{z_{\max}}{I_Y} \cos \alpha \right) \le [\sigma]$$

Avec
$$y_{max} = \frac{h}{2}, z_{max} = \frac{b}{2}, I_z = \frac{bh^3}{12}$$
 et $I_y = \frac{hb^3}{12}$

$$\Rightarrow M_{\max}\left(\frac{h \times 12}{2bh^3}\sin\alpha + \frac{12b}{hb^3}\cos\alpha\right) \le [\sigma]$$

$$M_{max}\left(\frac{6}{bh^2}\sin\alpha + \frac{6}{hb^2}\cos\alpha\right) \le [\sigma]$$

96 RESISTANCE DES MATERIAUX DE BASE

Pour h = 2b

$$M_{\max}\left(\frac{6}{b \times 4b^{2}}\sin\alpha + \frac{6}{2b \times b^{2}}\cos\alpha\right) \le [\sigma]$$
$$M_{\max}\left(\frac{3\sin\alpha}{2b^{3}} + \frac{3\cos\alpha}{b^{3}}\right) \le [\sigma] \Rightarrow \frac{3M}{b^{3}}\left(\frac{1}{2}\sin\alpha + \cos\alpha\right) \le [\sigma]$$
$$b \ge \sqrt[3]{\frac{3M}{[\sigma]}(0.5\sin\alpha + \cos\alpha)} \Rightarrow b = 13cm$$

Et

 $h = 2 \times b = 26 cm$

10.2.3 Application 2

Les poutres ayant un des moments d'inertie principaux très grand par rapport à l'autre sont très sensibles aux déviations des chargements par rapport à l'axe principal de chargement.

Calculer la variation de la contrainte due à une déviation de la charge de 2°.

Considérons le cas d'une console en IPE600 de longueur L = 3.5 m et ayant les caractéristiques

La poutre est sollicitée par une charge P = 50 kN appliquée à son extrémité libre. Calculer la variation de la contrainte pour une déviation de P de 2² par rapport à l'axe z-z

Solution:

Pour une force axée :

$$\sigma_{\text{max}} = \frac{M_{\text{max}} Y_{\text{max}}}{I_Z} = \frac{PL \times h/2}{I_Z} = \frac{50 \times 10^3 \times 305 \times 3500}{118.3 \times 10^7} = 45.1 \text{ N/mm}^2$$

On écrit l'équation de l'axe neutre pour déterminer son inclinaison par rapport à l'axe y-y lorsque la force est déviée de 2° par rapport à l'axe de chargement vertical z-z.

$$\alpha = 90 - 2 = 88^{\circ}$$

$$\mathrm{tg}\beta = -\frac{\mathrm{I}_{\mathrm{Z}}}{\mathrm{I}_{\mathrm{Y}}}\mathrm{ctg}\alpha = \frac{118.3 \times 10^{7}}{4.52 \times 10^{7}} \times \mathrm{ctg88^{\circ}} = -0.913 \Longrightarrow \beta = -42.4^{\circ}$$

On remarque que l'inclinaison de l'axe neutre est très importante pour une petite déviation de 2°. Les contraintes maximales se trouvent aux points extrêmes de la section.

$$M_{Z \max} = (P \cos \alpha)L \qquad M_{Y \max} = (P \sin \alpha)L \quad \text{à l'encastrement}$$

$$M_{Z \max} = 50 \times 10^{3} (\cos 2^{\circ}) \times 3500$$

$$M_{Y \max} = 50 \times 10^{3} (\sin 2^{\circ}) \times 3500$$

$$M_{Z \max} = 1.749 \times 10^{8} \text{ N.mm}$$

$$M_{Y \max} = 6.107 \times 10^{6} \text{ N.m}$$

$$\sigma_{\max} = \frac{M_{Z \max} Y_{\max}}{I_{Z}} + \frac{M_{Y \max} Z_{\max}}{I_{Y}} = \frac{1.749 \times 10^{8} \times 305}{118.3 \times 10^{7}} + \frac{6.107 \times 10^{6} \times 112}{4520 \times 10^{4}}$$

$$= 60.23 \text{ N/mm}^{2}$$

L'augmentation en % de la contrainte due à la déviation de la force est:

$$\frac{\sigma_{\max \text{ deviée}} - \sigma_{\max \text{ centrée}}}{\sigma_{\max \text{ centrée}}} \times 100 = 33.5\%$$

10.3 FLEXION COMPOSEE

La flexion composée provient de l'action conjuguée d'une flexion due à un chargement latérale et d'un effort axial (traction ou compression) ou seulement de l'effet d'un effort normal excentré par rapport à l'axe moyen de l'élément.

10.3.1 Flexion composée avec traction ou compression

C'est le cas général d'une poutre soumise à des chargements transversaux et longitudinaux, ou en une section arbitraire, les efforts M_Z , M_y , T_x , T_y ainsi que N sont présents.

En utilisant le principe de superposition, on peut déterminer la contrainte normale globale en un point quelconque de la section normale par:

$$\sigma = \frac{N_x}{S} + \frac{M_Z}{I_Z}y + \frac{M_Y}{I_Y}z$$
(10-8)

98 RESISTANCE DES MATERIAUX DE BASE

10.3.2 Traction ou compression excentrée

La flexion composée peut être aussi le résultat de l'action d'une force longitudinale excentrée par rapport à l'axe moyen de la poutre. On rencontre ce

cas de chargement généralement dans les éléments courts sollicités par une force excentrée dont les coordonnées du point d'application sont y_p , z_p .

Les efforts internes en une section quelconque sont:

$$N = F, M_z = F.y_p$$

Et $M_y = F.z_p$ (10-9)

D'où les contraintes en un point dans la section :

$$\sigma = \frac{N}{S} + \frac{M_Y}{I_Y}z + \frac{M_Z}{I_Z}y$$
(10-10)

$$\sigma = \frac{F}{S} \left[1 + \frac{z_P S_Z}{I_Y} + \frac{y_P S_Y}{I_Z} \right]$$
(10-11)

On pose $i = \sqrt{\frac{I}{S}}$

$$= \frac{F}{S} \left[1 + \frac{z_{P}}{i_{y}^{2}} z + \frac{y_{P}}{i_{z}^{2}} y \right]$$
(10-12)

L'équation de l'axe neutre: $\sigma = 0 \Longrightarrow 1 + \frac{z_P}{i_y^2}z + \frac{y_P}{i_z^2}y = 0$ (10-13)

D'après l'équation de l'axe neutre, ce dernier coupe les axes zz et yy aux points :

$$y = 0$$
 , $z_{AN} = -\frac{i_y^2}{z_P}$ (10-14)

Et

$$z = 0$$
 , $y_{AN} = -\frac{\dot{i}_z^2}{y_P}$ (10-15)

Donc l'axe neutre coupe les axes du quadrant opposé de celui du point d'application de la force.

Source: www.almohandiss.com

Fig. 10.5

Le noyau central

D'après l'équation de l'axe neutre l'étendu de la partie de la section comprimée ou tendue dépend de l'excentricité de la force. Il est donc d'un grand intérêt pratique d'éviter dans la le développement section droite des contraintes de traction dues à la force compressive excentrique pour assurer la résistance des barres en matériau fragile à la traction. On appelle noyau central de section la partie du plan de la section droite contenant le centre de gravité et limitée par un contour fermé, dans lequel la force appliquée provoque des contraintes de même signe en tous les points de la section droite.

Fig. 10.6

Le contour du noyau central de la section est déterminé par l'ensemble des positions des

points d'application de la force excentrée qui fait passer l'axe par tous les points tangents à la section de telle manière qu'elle ne le coupe nulle part.

Les coordonnées des points d'application de la force sont déterminées d'après les formules suivantes :

$$y_{\rm P} = -\frac{{{i_z^2}}}{{{y_{\rm AN}}}}$$
 , $z_{\rm P} = -\frac{{{i_y^2}}}{{{z_{\rm AN}}}}$

Ces formules traduisent la relation entre la position de l'axe neutre et le point d'application de la force. Quand l'axe neutre tourne par rapport à un point fixe y_0 et z_0 , le point d'application de la force se déplace suivant une ligne droite PP ne passant pas par le centre de gravité de la section.

Pour le cas d'un rectangle par exemple quand l'axe neutre est coïncidant avec AB : l'axe neutre coupe l'axe y-y à $y_{AN} = y_0 = \frac{h}{2}$ et ne coupe pas l'axe z-z

$$(Z_{AN} = \infty).$$

Les coordonnées du point d'application de la force correspondante à cette position de l'axe neutre sont déterminées par :

100 RESISTANCE DES MATERIAUX DE BASE

$$y_{P} = -\frac{i_{z}^{2}}{y_{AN}} = -\frac{h}{6}$$
car $i_{z}^{2} = \frac{I_{z}}{S} = \frac{bh^{3}}{12bh} = \frac{h^{2}}{12}$ (10-7)
$$z_{P} = -\frac{i_{y}^{2}}{z_{AN}} = -\frac{i_{y}^{2}}{\infty} = 0$$
 (10-

18)

1

D'une manière analogue on détermine les coordonnées du point 2 qui correspond à une position de l'axe neutre coïncidente avec AD, et on trouve

$$y_p = 0$$
 et $y_p = b / 2$ (10-
19)

La liaison des deux points 1 et 2 correspond à la rotation de l'axe neutre au point (z_0, y_0) passant de la position AB à AD.

Le contour du noyau central de la

section rectangulaire est un losange dont les deux autres points 3 et 4 sont déterminés de la même manière que précédemment, c'est à dire quand l'axe neutre passe de BA à AD et de AD à DC.

10.3.3 Vérification à la résistance

Pour une section symétrique, la condition de résistance s'écrit :

$$\sigma = \frac{F}{S} \pm \frac{M_Z}{W_Z} \pm \frac{M_Y}{W_Y} \le [\sigma]$$
(10-20)

Ou pour le cas d'un effort normal excentré

$$\sigma = \frac{F}{S} \left(1 \pm \frac{z_P}{i_y^2} z_{max} \pm \frac{y_P}{i_z^2} y_{max} \right) \le [\sigma]$$
(10-21)

10.3.4 Application

1/ Déterminer les contraintes normales σ_{max} et σ_{min} et la position de l'axe neutre dans la section dangereuse de la poutre ci-dessous :

2/ Si les angles que forme P avec les axes x-x, y-y et z-z sont 30°, 60° et 90° respectivement, déterminer la longueur L maximale de la poutre pour que la contrainte normale maximale ne dépasse pas celle provoquée par la force excentrée.

Fig. 10.7
Solution :

1- Les contraintes, maximale et minimale sont données par:

$$\sigma_{\max} = \frac{N}{S} \left(1 \pm \frac{z_P}{i_y^2} z_{\max} \pm \frac{y_P}{i_z^2} y_{\max} \right)$$

Application numérique

$$i_{y}^{2} = \frac{b^{2}}{12} = \frac{(240)^{2}}{12} = 4800 \text{mm}^{2}$$

$$I_{y} = \frac{hb^{3}}{12} = \frac{200 \times \overline{240}^{3}}{12} = 2.3 \times 10^{8} \text{mm}^{4}$$

$$i_{z}^{2} = \frac{h^{2}}{12} = \frac{\overline{200}^{2}}{12} = 3333.3 \text{mm}^{2}$$

$$I_{z} = \frac{bh^{3}}{12} = \frac{240 \times \overline{200}^{3}}{12} = 1.6 \times 10^{8} \text{mm}^{4}$$

$$z_{p} = 60 \text{ mm} \qquad z_{max} = 120 \text{ mm}$$

$$y_{p} = 50 \text{ mm} \qquad y_{max} = 100 \text{ mm}$$

$$N = 60 \times 10^{3} \text{ N}$$

$$S = 240 \times 200 = 48000 \text{ mm}^{2}$$

$$\sigma_{max,min} = \frac{60 \times 10^{3}}{48 \times 10^{3}} \left(1 \pm \frac{60 \times 120}{4800} \pm \frac{50 \times 100}{3333.3}\right) \Rightarrow \frac{\sigma_{max} = 5.0 \text{ N/mm}^{2}}{\sigma_{min} = -2.5 \text{ N/mm}^{2}}$$

2- La force inclinée par rapport à l'axe moyen de la poutre provoque une flexion composée dont les moments et l'effort normal résultant des projections de la

 $P_x = P \cos \alpha$ $P_y = P\cos\beta$ $P_z = P\cos\gamma$ $N = P_x = P \cos \alpha$ $M_v = P_z L = PL \cos \gamma$ $M_z = P_v L = PL \cos \beta$ $\sigma = \frac{N}{S} \pm \frac{M_z y_{max}}{I_z} \pm \frac{M_y z_{max}}{I_y}$

force sur les axes y-y, z-z et x-x sont respectivement:

Fig. 10.8

102 RESISTANCE DES MATERIAUX DE BASE

$$\sigma_{\max} = \frac{P \cos \alpha}{S} + \frac{y_{\max} P L \cos \gamma}{I_z} + \frac{P L \cos \beta z_{\max}}{I_y}$$
$$\Rightarrow \sigma_{\max} - \frac{P \cos \alpha}{S} = L \left(\frac{P \cos \gamma y_{\max}}{I_z} + \frac{P \cos \beta z_{\max}}{I_y}\right)$$

Application numérique

avec $\sigma_{max} = 5 \text{ N/mm}^2$

on obtient:

$$5 - \frac{60 \times 10^3 \cos 30}{48000} = L \left(\frac{60 \times 10^3 \cos 60 \times 100}{1.6 \times 10^8} + \frac{60 \times 10^3 \cos 90 \times 120}{2.3 \times 10^8} \right)$$
$$\Rightarrow L = \frac{3.92}{0.0188} = 209 \text{mm}$$

EXERCICES / chapitre 10

10.1 Déterminer les contraintes normales maximales et minimales dans les sections dangereuses des barres soumises à des sollicitations composées (Fig. E10.1).

- ✓ a) 26.5 p/a^2 , -27.5 p/a^2
 - *b) 17.6*, *-14.4*
 - *c)* 79.3 *p/d²*, -93.5 *p/d²*

10.2 Déterminer la dimension de la section droite de l'élément représenté sur la Fig. E10.2, sachant que:

$$[\sigma_{-}] = 120 \text{ N/mm}^2 \text{et}$$

 $\sigma_{+}] = 30 \text{ N/mm}^2.$

Fig. E10.2

Fig. E10.3

10.3 Calculer la valeur de la charge maximale P (Fig. E10.3), sachant que la contrainte admissible de traction est de 40 N/mm² et celle de compression est de 100 N/mm².

✓ $P=195.5 \, kN$

10.4 Déterminer la dimension t, pour laquelle les contraintes normales maximales dans les barres et l'applique seront les mêmes (Fig. E10.4).

✓
$$t = 4.65 h$$

Fig. E10.4

10.5 Un poteau en acier, dont la section est représentée sue la Fig. E10.5, est soumis à une force de compression de 1700 kN qui puisse se déplacer sur l'axe de symétrie z-z.

Déterminer les positions extrêmes de la ligne d'action de la charge si la contrainte de traction dans l'acier est limitée à 40 N/mm².

 \checkmark 207.8 mm, 177.7 mm de part et d'autre du centre de gravite.

FIg. E10.5

10.6 Un barrage en maçonnerie de forme trapézoïdale de 33 m de hauteur a une crête de 4 m d'épaisseur (Fig. E10.6). La densité de la maçonnerie est de 2500 kg/m³.

Déterminer la largeur minimale de la base du barrage pour éviter toute contrainte de traction à ce niveau, et ce pour une hauteur d'eau maximale de 30 m.

Chapitre 11

STABILITE DES BARRES ELASTIQUES COMPRIMEES (FLAMBEMENT)

11.1 GENERALITES

Les éléments d'une structure peuvent se détruire sous l'effet des charges de plusieurs manières différentes. Par exemple sous l'effet d'une flexion ou d'une traction excessive un élément ductile se rompt, alors qu'un autre élément composé d'un matériau fragile se brise. Ainsi des fractures peuvent apparaître dans un élément soumis à des charges cycliques. Dans la plupart des cas que nous avons vu jusque là les modes de rupture peuvent être évités en limitant les contraintes et les déformations aux limites admissibles. La résistance et la rigidité d'un élément sont donc les critères importants dans la conception des structures.

L'expérience courante montre qu'une barre longue soumise à un effort de compression peut se rompre par un phénomène de courbure de grande amplitude: *Le flambement*.

Ce chapitre est consacré à l'étude de ce phénomène d'instabilité des poutres élancées comprimées.

11.2 EQUILIBRE ELASTIQUE (STABLE ET INSTABLE)

L'équilibre élastique est stable si le corps après déformation tend à revenir à son état initial quand on élimine l'action extérieure qui était à l'origine de cette déformation.

Un équilibre est instable si sous l'action d'une sollicitation quelconque, le corps en déformation continue de se déformer dans le même sens que cette déviation imprégnée et ne revient pas à son état initial lorsque la sollicitation cesse son action. Entre ces deux états d'équilibre se trouve un état transitoire dit *critique*, ou un équilibre indifférent: le corps peut conserver la forme initiale ou bien la perdre, poussé par une sollicitation aussi petite qu'elle soit [1].

106 RESISTANCE DES MATERIAUX DE BASE

La Fig. 11.1 montre les cas possibles de déformation d'une poutre axialement chargée, ainsi qu'une analogie représentée par l'équilibre d'une boule sur des surfaces concaves, convexes ou planes qui correspond respectivement aux états d'équilibre stables, instables ou indifférents.

On appelle charge critique P_{cr} , la charge qui, une fois dépassée, provoque la perte de stabilité de la forme initiale du corps. Pour assurer la stabilité des éléments en compression il faut donc limiter la force de compression à la force critique (souvent, la rupture des éléments d'une structure est attribuée à une instabilité élastique et non à une insuffisance de résistance de la part du matériau).

La condition de stabilité s'écrit donc:

$$P \le [P]_{S} \quad \text{avec} [P]_{S} = P_{CT} / n_{S}$$
(11-1)

n_s étant le coefficient de la marge de stabilité.

11.3 FORCE CRITIQUE

Considérons une barre de longueur L et de section S articulée à ses extrémités et soumise à un effort de compression (Fig. 11.2). L'expression de la force critique P_{cr} est déterminée à partir de l'équation différentielle de la déformée de la barre:

$$EI_{min} \frac{d^2 v(x)}{dx^2} = -M(x)$$
(11-2)

Où

 I_{min} : le plus petit moment d'inertie de la section de la barre (car le flambement se produira dans le plan de plus faible rigidité de flexion)

v(x): la flèche

M(x): moment fléchissant égal à M(x) = $P \times v(x)$ (11-3)

On remplace M(x) dans (11.2)

$$EI_{min} \frac{d^2 v(x)}{dx^2} + Pv(x) = 0$$

$$\frac{\mathrm{d}^2 \mathbf{v}(\mathbf{x})}{\mathrm{d}\mathbf{x}^2} + \mathbf{k}^2 \mathbf{v}(\mathbf{x}) = 0$$

Avec $k^2 = \frac{P}{EI_{min}}$

La solution générale de cette équation est:

$$v(x) = A \sin kx + B \cos kx \qquad (11-7)$$

Reste à déterminer les constantes d'intégration A et B à partir des conditions aux limites:

$$v(0) = 0$$
 (11-8)

et
$$v(L) = 0$$
 (11-9)

La première condition donne B = 0 et la seconde donne:

$A \sin kL = 0$	(11-10)
Si sin $kL \neq 0$, on doit avoir $A = 0$ et $v = 0$.	
Si sin $kL = 0$	(11-11)

Alors A peut être quelconque

La solution de l'équation (11-11) est alors:

$$\Rightarrow$$
 kL = n π n: entier arbitraire (11-12)

$$k^2 L^2 = n^2 \pi^2 \tag{11-13}$$

D'après la définition (11-6) de k, la valeur de la charge critique:

$$P_{\rm cr} = \frac{n^2 \pi^2 E I_{\rm min}}{L^2}$$
(11-14)

Fig. 11.2

11.3.1 Longueur effective: (condition de fixation des bouts de la barre)

La force critique d'une barre dépend des modes de fixation de ses extrémités. Ces modes influent sur la forme de flambement. Ainsi une barre de longueur L encastrée à une extrémité et libre à l'autre, se flambe d'une façon analogue à celle de la moitié d'une barre articulée aux extrémités de longueur 2L.

On écrit alors l'équation d'Euler sous la forme:

$$P_{\rm cr} = \frac{\pi^2 E I_{\rm min}}{L_{\rm eff}^2} \tag{11-17}$$

Avec $L_{eff} = \mu L$, la longueur effective ou longueur libre de flambement.

 μ est un coefficient numérique dépendant des conditions aux limites de la barre.

Plus généralement, on peut calculer la longueur libre de flambement pour diverses conditions aux limites comme le montre la Fig. 11.5:

Fig. 11.5

11.3.2 Contrainte critique de flambement

La valeur de la contrainte critique de flambement est donnée par la formule:

$$\sigma_{\rm cr} = \frac{P_{\rm cr}}{S} = \frac{\pi^2 E I_{\rm min}}{S L_{\rm eff}^2}$$
(11-18)

$$=\frac{\pi^{2} \text{Ei}^{2}}{L_{\text{eff}}^{2}}$$
(11-19)

Avec $i_{min} = \sqrt{\frac{I_{min}}{S}}$ le plus petit rayon de giration de la section S

En définissant l'élancement $\lambda = \frac{L_{eff}}{i_{min}}$ de la barre, l'équation (11-19) devient:

 $\sigma_{\rm cr} = \frac{\pi^2 E}{\lambda^2} \tag{11-20}$

Puisque la contrainte critique σ_{cr} ne doit pas dépasser la limite de proportionnalité σ_{pr} du matériau de la barre, on peut donc déterminer un élancement limite λ_{lim} au-dessous de laquelle on n'est plus autorisé de se servir de la formule ci-dessus :

110 RESISTANCE DES MATERIAUX DE BASE

$$\sigma_{\rm cr} = \frac{\pi^2 E}{\lambda^2} \le \sigma_{\rm pr} \tag{11-21}$$

$$\Rightarrow \lambda_{\rm lim} = \pi \sqrt{\frac{\rm E}{\sigma_{\rm pr}}} \tag{11-22}$$

Ainsi pour l'acier, $\lambda_{lim} = 100$; pour la fonte $\lambda_{lim} = 80$ et pour le bois $\lambda_{lim} = 70$.

Le phénomène de flambement est observé aussi au-delà du domaine élastique. Dans ce cas, la valeur de la contrainte critique est calculée d'après les données expérimentales de F. Yassinski. Pour diffèrent matériaux elle est donnée par la formule empirique suivante:

$$\sigma_{\rm cr} = a - b\lambda + c\lambda^2 \tag{11-23}$$

Les valeurs de a, b et c sont données pour certains matériaux:

	λ_{lim}	a	b	с
Acier doux	100	3100	11.4	0
Bois (pin)	70	293	1.94	0
Fonte	80	7760	120ý	0.53

La formule de Yassinski est appliquée quand σ_{cr} est plus petite que σ_{ec} (limite d'écoulement) pour les matériaux ductiles et plus petite que la limite de résistance pour les matériaux fragiles.

Ainsi pour un matériau ductile la courbe $\sigma_{cr} = f(\lambda)$ est caractérisée par 3 phases distinctes (Fig. 11.6): Un palier horizontal correspondant à $\sigma_{cr} = \sigma_{ec}$, une droite oblique correspondant aux contraintes post-elastiques et l'hyperbole d'Euler qui correspond au domaine élastique avec $\lambda > \lambda_{lim}$.

Fig. 11.6

11.4 CALCUL A LA STABILITE:

La vérification de la stabilité des barres comprimées est ramenée à remplir la condition suivante:

$$\sigma_{\rm CT} \le [\sigma]_{\rm S} \tag{11-24}$$

 $[\sigma]_{s}$: contrainte admissible de stabilité et égale à:

$$[\sigma]_{\rm s} = \frac{\sigma_{\rm cr}}{n_{\rm s}} \tag{11-25}$$

 n_s : le coefficient de stabilité est pris toujours supérieur au coefficient de sécurité:

Dans ces intervalles, on adopte des coefficients de stabilité plus grands pour des barres plus flexibles.

Pour faire disparaître explicitement l'aspect géométrique contenu dans l'expression de la contrainte admissible de stabilité cette méthode utilise la contrainte admissible de compression $[\sigma_{-}]$ minorée par un coefficient φ dont la valeur est défini à partir :

$$\frac{[\sigma]_{s}}{[\sigma^{-}]} = \frac{\sigma_{cr}}{n_{s}} \times \frac{n}{\sigma_{d}}$$
(11-26)

n : coefficient de sécurité

 σ_d : contrainte dangereuse = σ_{ec} matériaux ductiles

$$[\sigma]_{s} = \frac{\sigma_{cr}}{\sigma_{d}} \frac{n}{n_{s}} [\sigma_{-}]$$
(11-27)

$$[\sigma]_{\rm s} = \varphi[\sigma_{\rm -}] \tag{11-28}$$

et
$$\varphi = \frac{n}{n_s} \times \frac{\sigma_{cr}}{\sigma_d}$$
 (11-29)

 ϕ est le coefficient de réduction de la contrainte admissible en compression et est donnée en fonction du matériau et l'élancement λ .

λ	0	40	60	80	90	100	110	120	130	140
Acier doux	1.00	0.92	0.86	0.75	0.69	0.6	0.52	0.45	0.40	0.36
Bois	1.00	0.87	0.71	0.49	0.38	0.31	0.25	0.22	0.18	0.16

112 RESISTANCE DES MATERIAUX DE BASE

La condition de stabilité s'écrit donc:

$$\sigma_{\max} \le [\sigma]_{S} = \phi[\sigma_{-}] \tag{11-30}$$

ou
$$\sigma = \frac{N}{S} \le \varphi[\sigma_{-}]$$
 (11-31)

Pour dimensionner à la stabilité une barre comprimée, on utilise la condition de stabilité sous la forme ci-dessous:

$$\sigma = \frac{F}{\varphi S} \le [\sigma_{-}] \tag{11-32}$$

Comme φ est inconnu on utilise la méthode d'itérations successives avec une valeur initiale $\varphi_1 = 0.5$ à 1. On détermine l'aire de la section S et les autres caractéristiques géométriques, I_{min}, i_{min} et λ . On calcul la valeur effective φ_1' et on la compare avec φ_1 . Si la différence est sensible, il faut reprendre alors le calcul avec une valeur intermédiaire entre φ_1 et φ_1' :

Soit :
$$\varphi_2 = \frac{\varphi_1 + \varphi_1}{2}$$
 (11.33)

Après le second essai on détermine φ_2' . Si l'écart est toujours sensible on reprend le calcul avec:

$$\varphi_3 = \frac{\varphi_2 + \varphi_2}{2} \tag{11.34}$$

Et ainsi de suite. Généralement on converge après deux ou trois itérations.

11.5 LA FORME RATIONNELLE POUR LES SECTIONS TRANSVERSALES DES BARRES COMPRIMEES.

Pour les éléments élancés ($\lambda \ge \lambda_{\lim}$), la condition de stabilité est plus sévère que celle de la résistance. Dans ce cas, la contrainte critique dépend uniquement du module d'élasticité E. Par conséquent, il est évident qu'il ne sert à rien d'employer un acier à haute résistance puisque E est pratiquement le même que celui de l'acier doux.

Pour une aire donnée, si la valeur du petit rayon de giration i_{min} est maximale, la forme de la section est dite rationnelle. Le rapport des contraintes critiques de certaines sections par rapport à une section circulaire pleine visualisent la rationalité de leurs formes :

Formes		P _{cr} / P _{cr} cercle
section en tube	$d_{int} / D_{ext} = 0.7$ à 0.8	18.00 à 12.49
section à cornière		3.12 à 1.12
section en U		2.10 à 1.05
section à double T ou I		2.10 à 0.91
section carrée		1.04
section circulaire		1.
section rectangulaire	h = 2b	0.520

Le tableau montre que les formes les plus rationnelles sont les sections en tubes ou les sections en caisson à parois minces ayant les moments d'inerties principaux identiques. Les sections rectangulaires pleines sont moins rationnelles.

11.6 APPLICATIONS

Exemple (1)

Déterminer la charge admissible P et le coefficient de stabilité n_{st} de la barre comprimée sachant que L = 2.0 m, d = 10 cm, $[\sigma] = 10 \text{ N/mm}^2$, $\lambda_{\text{lim}} = 70$ et E = 10^4 N/mm^2 .

Solution

Pour une section circulaire :

$$i_{\min} = \frac{d}{4} = \frac{100}{4} = 25$$
mm

L'élancement de la barre :

$$\lambda = \frac{\mu L}{i_{\min}} = \frac{1 \times 2000}{25} = 80 > \lambda_{\lim}$$

D'après le tableau, on a pour le bois $\lambda = 80 \rightarrow \phi = 0.49$

Par conséquent:

$$[\sigma]_{s} = \phi[\sigma_{-}] = 0.49 \times 10 = 4.9 \text{ N/mm}^{2}$$

Et

La force admissible :
$$P = [\sigma]_S S = 4.9 \times \pi \frac{100^2}{4} = 385 N$$

Puisque $\lambda > \lambda_{lim}$

$$\sigma_{\rm cr} = \frac{\pi^2 E}{\lambda^2} = \frac{\pi^2 \times 1 \times 10^4}{80^2} = 15.4 \,\mathrm{N} \,/\,\mathrm{mm^2}$$

114 RESISTANCE DES MATERIAUX DE BASE

$$n_s = \frac{\sigma_{cr}}{[\sigma]_s} = \frac{15.4}{4.9} = 3.14$$

Exemple (2)

Dimensionner, d'après le critère de stabilité, la barre comprimée ci-contre :

Sachant que $n_{st} = 2$, $E = 2.10^5 \text{ N/mm}^2$ et $\sigma_{pr} = 200 \text{ N/mm}^2$ Solution -On suppose que $\lambda > \lambda_{lim}$ $P \le \frac{P_{cr}}{n_{st}} \Rightarrow P_{cr} = n_{st}p = \frac{\pi^2 EI}{4L^2}$ L = 2. m $\Rightarrow I = \frac{4L^2 n_{st}p}{\pi^2 E} = \frac{4(2000)^2 2 \times 100 \times 10^3}{\pi^2 \times 2 \times 10^5}$ $= 16.2 \times 10^5 \text{ mm}^4$ $I = \frac{\pi d^4}{64} \Rightarrow d = 75.8 \text{mm}$ Fig. 11.8

Exemple (3)

Dimensionner, d'après le critère de stabilité, la barre comprimée ci-contre, sachant que $E = 1.0 \times 10^4 \text{ N/mm}^2$, P = 100 kN, $[\sigma_-] = 70 \text{ N/mm}^2$, et L = 2.0 m.

Solution

Comme le coefficient de stabilité n'est pas donné explicitement, on utilisera la méthode itérative en prenant une valeur initiale de $\varphi = 1$ qui correspond au critère de résistance.

Pour

$$\frac{P}{S} \le [\sigma_{-}] \Longrightarrow S \ge \frac{P}{[\sigma_{-}]}$$

$$\Rightarrow b \ge \sqrt{\frac{P}{[\sigma_{-}]}} = \sqrt{\frac{100 \times 10^{3}}{70}} = 37.8 \text{mm}$$
2.0 m

On calcule les caractéristiques géométriques et l'élancement réelle:

$$i = \frac{b}{\sqrt{12}} = \frac{37.8}{\sqrt{12}} = 10.91 \Rightarrow \lambda = \frac{2000 \times 0.7}{10.91} = 128.3$$
 a Fig. 11.9

Source: www.almohandiss.com

 ϕ^{\pm}

V////////

Pour $\lambda = 128.3$ on détermine φ , en interpolant linéairement entre $\lambda = 120$ et 130.

$$\varphi = 0.22 + \frac{(0.18 - 0.22)}{10}(128.3 - 120) = 0.187$$

On prend donc une nouvelle valeur de φ telle que

$$\varphi = \frac{1 + 0.187}{2} \approx 0.6$$

Pour
$$\varphi = 0.6 \implies b \ge \sqrt{\frac{P}{[\sigma_-]}} = \sqrt{\frac{100 \times 10^3}{0.6 \times 70}} = 48.8$$

 $i = \frac{48.8}{\sqrt{12}} = 14.08 \implies \lambda = \frac{2000 \times 0.7}{14.08} = 99.4 \implies \varphi = 0.31$

On remarque que la valeur de $\boldsymbol{\phi}$ a sensiblement changée, on doit alors prendre

$$\varphi = \frac{0.6 + 0.31}{2} = 0.455 \implies b \ge \sqrt{\frac{P}{[\sigma_-]}} = \sqrt{\frac{100 \times 10^3}{0.455 \times 70}} = 56.0$$
$$i = \frac{56}{\sqrt{12}} = 16.17 \implies \lambda = \frac{2000 \times 0.7}{16.17} = 86.6 \implies \varphi = 0.42$$

On fait une autre itération avec

$$\varphi = \frac{0.445 + 0.42}{2} = 0.44 \quad \Rightarrow b \ge \sqrt{\frac{P}{[\sigma_{-}]}} = \sqrt{\frac{100 \times 10^3}{0.44 \times 70}} = 57.0$$
$$i = \frac{57}{\sqrt{12}} = 16.45 \Rightarrow \lambda = \frac{2000 \times 0.7}{16.45} = 85.1 \Rightarrow \varphi = 0.43$$

On fait une dernière itération avec:

$$\varphi = \frac{0.44 + 0.43}{2} = 0.435 \implies b \ge \sqrt{\frac{P}{[\sigma_-]}} = \sqrt{\frac{100 \times 10^3}{0.435 \times 70}} = 57.3$$

Done on prend b = 58.0 mm

RESISTANCE DES MATERIAUX DE BASE

EXERCICES / chapitre 11

11.1 Calculer la force critique P_{cr} et la contrainte critique σ_{cr} d'un tube en dural (Fig. E11.1) sachant que:

 $\sigma_{pr} = 180 \text{N/mm}^2$, et $\text{E} = 0.7 \times 10^5 \text{N/mm}^2$.

✓
$$P_{cr} = 85.3$$
 kN et
 $\sigma_{cr} = 155 N/mm^2$

11.2 Un poteau en acier doux de longueur L = 2.5 m a une section rectangulaire de 80 mm de largeur et de 120 mm de hauteur. Il est articulé à ses extrémités et supporte une force axiale P. Etant données:

 $[\sigma_{-}] = 160 \text{ N/mm}^2, \text{ E} = 2.\times 10^5 \text{N/mm}^2 \text{ et}$ $\lambda_{\text{lim}} = 100.$

Déterminer la force P en prenant nst = 2.

✓
$$P = 812.64 \, kN$$

11.3 Une barre en acier doux est comprimée force par une P = 960 kN.

Déterminer la dimension b de la droite de barre section la (Fig. E11.3). On donne:

$$[\sigma_{]}=160$$
N/mm²,E= 2.×10⁵ N/mm²,

 $\lambda_{\text{lim}} = 100 \text{ et } n_{\text{st}} = 2.$

✓ b=76.6 mm

11.4 Vérifier la stabilité des barres comprimées (Fig. E11.4) et calculer en pourcentage leur surtension ou sous-tension. On néglige les éventuelles déformations de torsion et on prendra les contraintes admissibles pour les colonnes (a), (b) et (c) 200 N/mm², 160 N/mm^2 et 10 N/mm^2 respectivement.

(Profile en I: S=2540 mm², $I_{min} = 114 \times 10^4 mm^4$)

 \checkmark Sous-tension 4.8%. surtension 33%, surtension 2.4%

11.5 Calculer le rapport de dimension b/a de la section de la colonne de la Fig. E11.5 d'après la condition d'égale stabilité par rapport aux axes principaux.

✓
$$b/a = 2.86$$

Fig. E11.5

11.6 Calculer la longueur L pour laquelle un poteau en acier comprimé, de section circulaire de diamètre d, articule à ses extrémités, devient instable. On donne :

 $\sigma_{pr} = 190 \text{ N/mm}^2, \quad \sigma_{ec} = 240 \text{ N/mm}^2, \quad E = 2.\times 10^5 \text{ N/mm}^2, \\ d = 10 \text{ mm et } P = 10 \text{ kN}.$

11.7 Dimensionner les colonnes comprimées de la Fig. E11.7 d'après la condition de stabilité. On prendra pour l'acier $[\sigma_{-}] = 160 \text{ N/mm}^2$, et pour le bois $[\sigma_{-}] = 10 \text{ N/mm}^2$.

✓ $b=100 \text{ mm}, N24 \text{ (S}= 3480 \text{ mm}^2, i_{min} = 23.7 \text{ mm}) \text{ ou des}$ valeurs proches par défaut.

Fig. E11.7

Chapitre 12 SYSTEMES EN TREILLIS

12.1 GENERALITES ET DEFINITIONS

Les systèmes en treillis ou réticulés sont des structures composées de barres articulées entres-elles à leurs extrémités. Les articulations communes à plusieurs barres sont les noeuds du système. Ce type de structures est utilisé dans le domaine du génie civil, et généralement pour les structures en charpente métallique ou en bois. Les fermes des toitures des hangars et des grandes salles de sport ainsi que des ponts et pylônes sont des exemples de structures en treillis (Fig. 12.1). Une des caractéristiques fondamentales de ces systèmes c'est qu'elles présentent une rigidité importante suivant leurs plans sans être pénalisant en terme de poids propre.

Pylône

Fig. 12.1

On appelle les éléments (extérieurs) d'un système en treillis les membres et la forme intérieur le réseau (Fig. 12.2).

Un système en treillis est appelé ferme si $\frac{h}{L} = 0.1$ à 0.5 et la forme soit triangulaire, polygonale ou curviligne. Par contre si $\frac{h}{L} < 0.1$ le système est dit poutre à treillis, en général ses membrures sont parallèles.

On distingue les systèmes de barres spatiaux et plans. Dans ce chapitre nous nous bornerons à l'étude des systèmes en treillis plans: Les noeuds et les forces éxterieures sont contenus dans un même plan.

triangulaire

Polygonale

curviligne

Fermes

Poutre en treillis

12.2 ETUDE CINEMATIQUE DES SYSTEMES EN TREILLIS

Les systèmes de barres se subdivisent en formes géométriquement déformables et indéformables; ces derniers en isostatiques et hyperstatiques. Le système est dit géométriquement indéformable s'il ne change pas de forme et de position sous l'action des charges (Fig. 12.4 c,d). Dans le cas contraire le système est dit géométriquement déformable ou mécanisme (fig.12.4.a,b).

Fig. 12.3

120 RESISTANCE DES MATERIAUX DE BASE

Le système indéformable est isostatique si les réactions d'appuis se déterminent à l'aide des seules conditions d'équilibre. Dans le cas contraire le système est dit hyperstatique. Pour déterminer la catégorie du système, on utilise l'étude cinématique qui peut être exprimée par la formule suivante:

L = 3b - 3r - 2a - l

L: le degré de stabilité du système.

b: le nombre de barres .

r: le nombre de noeuds rigides simples (assemblant 2 barres)

a: le nombre d'articulations simples (assemblant 2 barres). Pour chaque noeud, *a* est égal au nombre d'extrémités de barres concourant au noeud -1

l: le nombre de réactions d'appuis simples.

Si L > 0 le système est géométriquement déformable

Si L = 0 le système est isostatique

Si L < 0 le système est hyperstatique, et le degré d'hyperstatique H = -L

Cette condition est nécessaire mais pas suffisante pour avoir un système indéformable et isostatique, car elle donne uniquement le nombre nécessaire des liaisons pour former un système isostatique. Il faut donc toujours vérifier l'indéformabilité du système (étude géométrique).

Exemple:

Faire l'étude cinématique du système en treillis représenté sur la Fig. 12.5

 $L = 3 \times 13 - 3 \times 0 - 2 \times 18 - 3 = 0$

on note que le nombre d'articulation simple est égale au nombre des angles que forment les barres du treillis entre elles.

L = 0 le système est donc isostatique et indéformable, car il est constitué de barres formant des triangles et il est lié par des liaisons dont leurs axes ne se coupent pas en un point.

Fig. 12.5

12.3 ETUDE DES SYSTEMES EN TREILLIS

Les réactions d'appuis sont déterminées à partir des équations de la statique. Les efforts dans les barres cependant, sont déterminés par l'une des méthodes suivantes:

12.3.1 Méthode des sections (Gullmann)

Elle consiste à couper le système en deux parties, et considérer les équations d'équilibre de la statique de l'une des deux parties. La section devrait être choisie pour qu'il y ait au maximum trois efforts inconnus.

Exemple:

Déterminer les efforts dans les barres S_2 , D_1 et I_2 du système de la Fig.12.6

Solution

On montre que le système est isostatique et indéformable. On sectionne le système au niveau des barres où on veut déterminer les efforts. On établit ensuite l'équilibre de la partie gauche avec les trois inconnues S_2 , D_1 et I_2 .

$$\sum M_{/D} = 0 \Rightarrow h \times S_2 + \frac{PL}{2} - \frac{PL}{4} = 0 \Rightarrow S_2 = -\frac{PL}{4h}$$
$$\sum F_v = 0 \Rightarrow P - P - D_1 \sin \alpha = 0 \Rightarrow D_1 = 0$$
$$\sum F_h = 0 \Rightarrow S_2 + I_2 + D_1 \cos \alpha = 0 \Rightarrow I_2 = -S_2 = \frac{PL}{4h}$$

12.3.2 Méthode des noeuds

On établit l'équilibre des noeuds après avoir remplacé chaque barre concourant au noeud par l'effort correspondant. On détermine ainsi les efforts inconnus qui ne devraient pas être plus de deux par noeud.

Exemple

Considérons le noeud A du système de la Fig. 12.6.

Les équations d'équilibre du noeud s'écrivent:

$$\sum F_{v} = 0 \Rightarrow P + S_{1} \sin \alpha = 0 \Rightarrow S_{1} = -\frac{P}{\sin \alpha}$$
$$\sum F_{h} = 0 \Rightarrow I_{1} + S_{1} \cos \alpha = 0 \Rightarrow I_{1} = -S_{1} \cos \alpha = P \frac{\cos \alpha}{\sin \alpha}$$

RESISTANCE DES MATERIAUX DE BASE 122

Remarque:

On peut combiner la méthode des sections avec celle des noeuds lors de la résolution d'un système en treillis.

12.3.3 Application

Déterminer les efforts du système représenté la sur Fig.12.7

1 Etude cinématique

 $L=3\times 13 - 2\times 18 - 3 = 0$

Le système est isostatique.

Equilibre du noeud A :

$$2 + S_1 \sin 45 = 0 \Rightarrow S_1 = -\frac{2}{\sqrt{2}} \times 2 = -2\sqrt{2} \text{KN}$$

 $I_1 + S_1 \frac{\sqrt{2}}{2} = 0 \Rightarrow I_1 = -S_2 \frac{\sqrt{2}}{2} = 2\text{KN}$

45 11 2

Section 1.1 :

$$\sum M_{/G} = 0 \Longrightarrow 2 \times 1 - 2 \times 2 + 1 \times I_2 = 0 \Longrightarrow I_2 = 2KN$$
$$\sum F_v = 0 \Longrightarrow 2 - 2 + \frac{\sqrt{2}}{2}D_1 = 0 \Longrightarrow D_1 = 0$$
$$\sum F_h = 0 \Longrightarrow S_2 + I_2 = 0 \Longrightarrow -I_2 = S_2 = -2KN$$

Equilibre du noeud F :

$$\sum F_{v} = 0 \Rightarrow \frac{\sqrt{2}}{2}S_{1} + V_{1} + 2 = 0 \Rightarrow V_{1} = 0$$
$$\sum F_{h} = 0 \Rightarrow S_{2} - \frac{\sqrt{2}}{2}S_{1} = -2 + 2\sqrt{2}\frac{\sqrt{2}}{2} = 0$$

Equilibre du noeud D :

$$\sum F_{v} = 0 \Rightarrow V_{2} = 0$$
$$\sum F_{h} = 0 \Rightarrow I_{3} = I_{2} = -2KN$$

Par symétrie :

$$S_3 = S_2 = 0$$

$$D_2 = D_1 = 0$$

$$S_4 = S_1 = -2\sqrt{2}KN$$

$$V_3 = V_1 = 2KN$$

$$I_4 = I_1 = -2KN$$

12.3.4 Méthode graphique de "Cremona"

L'analyse des systèmes en treillis ayant un nombre élevé de barres nécessite un effort considérable de calcul et de concentration. A l'époque où on n'avait pas de moyens de calcul, la tâche était encore plus difficile. Pour surmonter ce problème, on avait procédé par des méthodes graphiques, qui avec des moyens de mesure ordinaire, on peut obtenir une bonne approximation des efforts. Cette méthode est basée essentiellement sur la méthode des noeuds qui consiste à représenter l'équilibre des noeuds par des polygones des forces.

Etapes de résolution :

1/ Construction du schéma du système selon une échelle de longueur .

2/ Désignation alphabétique des noeuds du système.

3/ Numérotation des intervalles entre les forces extérieures y compris les réactions dans le sens des aiguilles d'une montre, ensuite les mailles du réseau.

Ainsi chaque barre et par conséquent chaque effort et chaque force extérieure peut-être caractérisé par les deux chiffres entre lesquels il est situé.

4/ Construction du polygone des forces extérieures selon une échelle de force choisie. En parcourant les forces dans le sens des aiguilles d'une montre et en représentant chaque force par un vecteur dont le point initial et final correspond respectivement aux chiffres situés avant et après la force, on obtient ainsi un polygone fermé.

5/ Construction des polygones des efforts internes pour chaque noeud, en commençant par le noeud où il n'y a pas plus de deux inconnues.

6/ L'intensité de l'effort dans chaque barre est égale à la longueur du segment -à échelle des forces- correspondant aux deux nombres caractérisant la barre.

7/ Le sens de l'effort est déterminé par le sens de parcours du premier au deuxième point correspondant aux chiffres caractérisant l'effort quand on tourne autour du noeud de l'une des extrémités de la barre dans le sens des aiguilles d'une montre.

124 RESISTANCE DES MATERIAUX DE BASE

L'effort est une compression si le sens est rentrant au noeud et il est représenté par

 $\xrightarrow{}$. Si le sens est sortant du noeud l'effort est une traction et, est représenté par

Remarques

Si nous devons déterminer les efforts dans toutes les barres du système, il convient d'utiliser la méthode des noeuds sous la forme analytique ou graphique (Cremona). Si par contre il est nécessaire de déterminer quelques efforts, il est préférable d'utiliser la méthode des sections.

12.3.5 Application

Déterminer graphiquement les efforts dans les barres du système à treillis représenté sur la Fig. 12.8.

Solution

- Les étapes de 1 jusqu'à ² 3 de la méthode graphique sont représentées sur la Fig. 12.8.

- On trace ensuite le diagramme des forces extérieures, qui dans ce cas est un polygone fermé sur une même ligne comme indiqué sur la Fig. 12.9.

- Le diagramme des efforts se détermine en localisant les nombres du réseau, en commençant par le nombre 6 qui se situe sur l'intersection des segments de

droites horizontale passant par 1 et diagonale parallèle à AF passant par 2. De la même manière on localise les autres nombres ayant chacun au moins deux nombres adjacents connus (déjà déterminés). On obtient ainsi le diagramme des efforts internes de toutes le barres (Fig.12.9).

Le sens de chaque effort se détermine en appliquant la règle (7) de la méthode de Cremona pour chaque noeud du système. Le signe des efforts dans chaque barre est indiqué par la convention des flèches sur la Fig. 12.10.

Fig. 12.9

Finalement, on désigne chaque barre par les deux nombres se trouvant de part et d'autre, les distances entre chaque pair de nombres donne la valeur de l'effort dans cette barre. Le tableau ci-dessous résume les efforts dans chaque barre et leurs signes correspondant. Par raison de symétrie, on ne considère que la partie gauche.

126 RESISTANCE DES MATERIAUX DE BASE

12.1 Déterminer par la méthode analytique les efforts dans les barres du système en treillis de la Fig. E12.1.

✓ $AB=100 \ kN$ $AD=141.4 \ kN$ $BC=141.4 \ kN$ $AE=0 \ BD=-100 \ kN$ $DE=-200 \ kN \ CD=-100 \ kN$

12.2 Déterminer les efforts des barres concourant au point C du système représenté sue la Fig. E12.2.

✓ $BC=-51.07 \ JC=-32.07$ $IC=70.70 \ CD=-100.0$

Fig. E12.2

12.3 Déterminer les efforts des barres CE, CD, et FE du treillis d'une toiture en charpente métallique schématisée sur la Fig. E12.3.

12.4 Vérifier la résistance et la stabilité des barres du système de la Fig. E12.4, sachant que toutes les barres sont en acier de section rectangulaire 50mm x 20mm,

 $[\sigma] = 160 \text{ N/mm}^2$, E = 2×10⁵ N/mm², n_{st} = 2, et $\lambda_{\text{lim}} = 100$.

Fig. E12.3

Fig. E12.4

12.5 Déterminer les efforts dans les barres des systèmes (a),(b) et (c) de la Fig. E12.5 par la méthode analytique et graphique (Cremona).

✓ (a) AC = 600 BC = -4160 CD = -1835 DE = 2240 EC = -2240AE = 3165

Fig. E12.5

Chapitre 13 DEFORMATION ELASTIQUE A LA FLEXION

13.1 GENERALITES

Quand on charge une poutre, la ligne moyenne qui, initialement est droite, se déforme sous l'effet d'un moment fléchissant. L'allure de l'axe longitudinal de la poutre après flexion (déformé) est appelée ligne élastique.

On s'intéresse au calcul des déformations élastiques à la flexion pour pratiquement deux raisons :

- Calcul à la rigidité : en plus du calcul à la résistance, on doit parfois vérifier que la flèche de la poutre ne dépasse pas la valeur de la flèche maximale permise.

- Le calcul des déformations est essentiel pour l'analyse des systèmes hyperstatiques, comme nous allons le voir dans le chapitre suivant.

13.2 EQUATION DIFFERENTIELLE DE LA LIGNE ELASTIQUE

L'arc GG' ayant pour longueur dl:

$$dl = Rd\theta \tag{13-2}$$

ou
$$\frac{1}{R} = \frac{d\theta}{dl}$$
 (13-3)

La tangente de la courbure v au point x est défini par :

$$\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\mathbf{x}} = \mathrm{tg}\,\theta\tag{13-4}$$

Pour des angles de rotations très petits on assimile :

$$tg\theta = \theta \tag{13-5}$$

$$et \quad dl = dx \tag{13-6}$$

En remplaçant (13-5) et (13-6) par leurs valeurs dans (13-3) et (13-4) on obtient :

$$\frac{1}{R} = \frac{d\theta}{dx}$$
(13-7)

et
$$\theta = \frac{\mathrm{d}v}{\mathrm{d}x}$$
 (13-8)

En dérivant (13-8) par rapport à x :

$$\frac{\mathrm{d}\theta}{\mathrm{d}x} = \frac{\mathrm{d}^2 v}{\mathrm{d}x^2} \tag{13-9}$$

Des équations (13-7) et (13-9), il en résulte :

$$\frac{1}{R} = \frac{d\theta}{dx} = \frac{d^2v}{dx^2}$$
(13-10)

L'équation (13-1) s'écrira donc:

$$\frac{\mathrm{d}^2 \mathrm{v}}{\mathrm{dx}^2} = -\frac{\mathrm{M}_z}{\mathrm{EI}_z} \tag{13-11}$$

C'est l'équation différentielle de la ligne élastique que l'on intègre dans chaque cas particulier afin de déterminer les flèches des poutres.

Le signe dans l'équation (13-11) correspond à :

(1) x et v sont positifs vers la droite et vers le bas respectivement.

(2) l'angle θ est positif dans le sens des aiguilles d'une montre à partir de l'axe x.

(3) M positif quand il tend les fibres inférieures.

(4) la courbure est positive si la courbe est concave vers le bas (M>0 et 1/R>0)

Source: www.almohandiss.com

Fig. 13.2

130 RESISTANCE DES MATERIAUX DE BASE

On dispose de plusieurs méthodes pour la résolution de l'équation différentielle de la déformée. Les procédures les plus utilisées seront présentées ci-après.

13.3 METHODE D'INTEGRATION DIRECTE

L'équation de la déformée peut être obtenue par intégration successive de l'équation différentielle (13-11).

En intégrant une première fois on obtient l'équation de l'angle de rotation :

$$\theta(\mathbf{x}) = \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\mathbf{x}} = \int -\frac{\mathbf{M}(\mathbf{x})}{\mathrm{EI}} \mathrm{d}\mathbf{x} + \mathrm{C}_1 \tag{13-12}$$

En intégrant une seconde fois il vient :

$$v(x) = \int \left[\int -\frac{M(x)}{EI} dx + C_1 \right] dx + C_2$$
(13-13)

Où C_1 et C_2 sont les constantes d'intégration à déterminer à partir des conditions aux limites.

Il faut noter que dans le cas des poutres ayant plusieurs tronçons dont chacun possède sa propre équation du moment, il faut substituer l'expression de M dans chacune des équations différentielles et procéder à l'intégration. Les constantes d'intégration dans ce cas sont déterminées en utilisant les conditions aux appuis des extrémités de la poutre et aux conditions de continuité aux limites des tronçons.

13.3.1 Applications

Exemple1

Déterminer l'expression de la déformée d'une console soumise à une charge uniformément répartie sur toute sa longueur.

Fig. 13.3

Solution

Le moment fléchissant d'une section située à une distance x de l'extrémité libre est:

$$M = -q\frac{x^2}{2}$$

En intégrant deux fois l'équation différentielle de la déformée on obtient:

$$EIv''(x) = -M = q\frac{x^2}{2}$$

$$EIv'(x) = EI\theta(x) = q \frac{x^3}{6} + C_1$$

 $EIv(x) = \frac{qx^4}{24} + C_1x + C_2$

Conditions aux limites :

$$v'(L) = 0 \Rightarrow q \frac{L^{3}}{6} + C_{1} = 0 \Rightarrow C_{1} = -q \frac{L^{3}}{6}$$
$$v(L) = 0 \Rightarrow q \frac{L^{4}}{24} - \frac{qL^{4}}{6} + C_{2} = 0 \Rightarrow C_{2} = \frac{3qL^{4}}{24} = \frac{qL^{4}}{8}$$
$$D'où \ v = \frac{1}{EI} \left[\frac{qx^{4}}{24} - \frac{qL^{3}}{6}x + \frac{qL^{4}}{8} \right] \quad \text{et} \quad v'(x) = \theta(x) = \frac{1}{6EI} (qx^{3} - qL^{3})$$

à l'extrémité libre
$$x = 0 \Rightarrow \theta_{max} = \frac{-qL^3}{6EI}$$
 et $f = \frac{qL^4}{8EI}$

Exemple 2

Déterminer les équations de la déformée et déduire la flèche maximale pour une poutre reposant librement sur deux appuis et soumise à une charge concentrée à une distance a de l'appui A (Fig. 13.4).

Solution

Fig. 13.4

Les réactions aux appuis sont:

$$R_{A} = P \frac{b}{L} \qquad \qquad R_{B} = P \frac{a}{L}$$

Equation de la déformée de A vers B: Dans ce cas il existe deux expressions différentes du moment fléchissant correspondant aux deux tronçons de la poutre. On écrit donc l'équation de la ligne élastique pour chaque tronçon.

$$EIv_1'' = -\frac{Pb}{L}x \qquad (0 \le x \le a)$$
$$EIv_2'' = -\frac{Pb}{L}x + P(x-a) \qquad (a \le x \le L)$$

1ère Intégration :

$$EIv_1' = -\frac{Pbx^2}{2L} + C_1 \qquad (0 \le x \le a)$$

132 RESISTANCE DES MATERIAUX DE BASE

$$EIv'_{2} = -\frac{Pbx^{2}}{2L} + \frac{P(x-a)^{2}}{2} + C_{2}$$
 $(a \le x \le L)$

2^e Intégration :

$$EIv_1 = -\frac{Pb}{6L}x^3 + C_1x + C_3$$
 $(0 \le x \le a)$

$$EIv_2 = -\frac{Pb}{6L}x^3 + \frac{P(x-a)^3}{6} + C_2x + C_4$$
 (a ≤ x ≤ L)

Calculons les constantes d'intégration :

(1) pour x = 0 $v_1 = 0 \Rightarrow C_3 = 0$ (1)

$$x = a \quad v'_1 = v'_2 \Longrightarrow -\frac{Pba^2}{2L} + C_1 = -\frac{Pba^2}{2L} + C_2$$
 (2)

$$x = a \quad v_1 = v_2 \Longrightarrow -\frac{Pba^3}{6L} + C_1a + C_3 = -\frac{Pba^3}{6L} + C_2a + C_4$$
 (3)

$$\mathbf{x} = \mathbf{L} \quad \mathbf{v}_2 = \mathbf{0} \Longrightarrow \mathbf{C}_4 = \mathbf{0} \tag{4}$$

de (2), il vient $C_1 = C_2$

de (3), il vient
$$C_3 = C_4 = 0$$

Nous obtenons de (3) $\Rightarrow C_1 = C_2 = \frac{Pb(L^2 - b^2)}{6L}$

Après substitution, les équations de la ligne élastique prennent les formes :

$$\begin{aligned} \mathbf{v}_{1} &= \frac{1}{\mathrm{EI}} \left[\frac{\mathrm{Pbx}}{\mathrm{6L}} \left(\mathrm{L}^{2} - \mathrm{b}^{2} - \mathrm{x}^{2} \right) \right] \\ \theta_{1}(\mathbf{x}) &= \frac{1}{\mathrm{EI}} \left[\frac{\mathrm{pb}}{\mathrm{6L}} \left(\mathrm{L}^{2} - \mathrm{b}^{2} - \mathrm{3x}^{2} \right) \right] & (0 \le \mathbf{x} \le \mathbf{a}) \\ \mathbf{v}_{2} &= \frac{1}{\mathrm{EI}} \left[\frac{\mathrm{pbx}}{\mathrm{6L}} \left(\mathrm{L}^{2} - \mathrm{b}^{2} - \mathrm{x}^{2} \right) + \frac{\mathrm{p}(\mathrm{x} - \mathrm{a})^{3}}{\mathrm{6}} \right] \\ \theta_{2}(\mathbf{x}) &= \frac{1}{\mathrm{EI}} \left[\frac{\mathrm{pb}}{\mathrm{6L}} \left(\mathrm{L}^{2} - \mathrm{b}^{2} - \mathrm{3x}^{2} \right) + \frac{\mathrm{p}(\mathrm{x} - \mathrm{a})^{2}}{\mathrm{2}} \right] & (\mathbf{a} \le \mathbf{x} \le \mathrm{L}) \end{aligned}$$

Les angles de rotation aux appuis :

$$\theta_1(0) = \frac{Pb(L^2 - b^2)}{6LEI} = \frac{Pab(L+b)}{6LEI}$$
$$\theta_2(L) = -\frac{Pab(2L-b)}{6LEI}$$

L'angle θ_1 est maximal pour $b = \frac{L}{\sqrt{3}}$

Si a > b, la flèche maximale se situera dans la zone a $(v_1(x))$

$$v_{max} \Rightarrow \frac{dv(x)}{dx} = \theta(x) = 0 \Rightarrow L^2 - b^2 - 3x^2 = 0$$
$$x_1 = \sqrt{\frac{L^2 - b^2}{3}} = \sqrt{\frac{a(L+b)}{3}}$$
$$v_{max} = \frac{pb(L^2 - b^2)^{\frac{3}{2}}}{9\sqrt{3}LEI}$$

Dans le cas où la force P agit au milieu de la poutre $(a = b = \frac{L}{2})$

On obtient alors

$$f = \frac{pL^3}{48EI}$$

$$\theta_{\rm max} = \frac{{\rm pL}^2}{16{\rm EI}}$$

13.4 METHODE DE LA POUTRE CONJUGUEE (FICTIVE) :

La méthode d'intégration directe de l'équation différentielle de la ligne élastique qui est très efficace pour les poutres simples à un seul tronçon, devient laborieuse même pour une poutre à trois tronçons. Pour simplifier les calculs il est parfois utile de se servir d'autres méthodes, comme la méthode des paramètres initiaux ou la méthode grapho-analytique dite méthode de la poutre conjuguée (fictive).

Cette dernière est basée sur l'analogie qui existe entre l'équation différentielle de la déformée et celle qui lie le moment fléchissant à la charge répartie :

$$\frac{d^2 v(x)}{dx^2} = -\frac{M(x)}{EI} \Leftrightarrow \frac{d^2 M(x)}{dx^2} = q(x).$$
(13-14)

Pour une poutre donnée, la méthode grapho-analytique consiste à considérer le diagramme des moments fléchissant comme une charge fictive répartie agissant sur une poutre fictive.

La flèche v(x) et l'angle de rotation $\theta(x)$ de la poutre donnée sont déterminées respectivement par le rapport du moment fléchissant et de l'effort tranchant dans une section x de la poutre fictive à la rigidité de la poutre donnée c'est-à-dire :

134 RESISTANCE DES MATERIAUX DE BASE

$$\theta(\mathbf{x}) = \frac{\mathbf{T}_{f}(\mathbf{x})}{\mathrm{EI}}$$
(13-15)
$$\mathbf{v}(\mathbf{x}) = \frac{\mathbf{M}_{f}(\mathbf{x})}{\mathrm{EI}}$$

Où $T_{f}(x)$: l'effort tranchant de la poutre fictive

 $M_{f}(x)$: moment fléchissant de la poutre fictive

Les règles de construction de la poutre fictive sont les suivantes :

1- Un appui à l'extrémité de la poutre réelle reste inchangé pour la poutre fictive.

2- Un appui intermédiaire de la poutre réelle est remplacé par une articulation dans la poutre fictive.

3- Une articulation de la poutre réelle devient un appui intermédiaire dans la poutre fictive.

4- L'encastrement de la poutre réelle est pris comme extrémité libre dans la poutre fictive.

5- Une extrémité libre de la poutre réelle devient un encastrement dans la poutre fictive.

Le diagramme positif du moment fléchissant de la poutre réelle agit sur la poutre fictive de haut en bas et le diagramme négatif du moment fléchissant de la poutre réelle agit sur la poutre fictive de bas en haut.

Il faut noter aussi que cette méthode est efficace pour calculer les déplacements des sections particulières de la poutre, pourvu qu'il soit facile de déterminer les aires et les centres de gravité des diagrammes du moment fléchissant.

13.4.1 Applications

Exemple 1

On donne P, L, E et I

- Déterminer $\theta_c, \theta_A \text{ et } f_A$

- Déterminer la charge P pour que $f_{max} \le \frac{L}{200}$

$$V_{A'} = -PL \times L + \frac{PL^2}{6} = \frac{-5PL^2}{6} \Rightarrow T_{A'} = V_{A'} = \frac{-5PL}{6}^2$$

$$M_{A'} = \frac{-PL^2}{6} \times 2L + PL^2 \times L = \frac{2}{3}PL^3$$

D'où
$$\theta_{A} = \frac{T_{A'}}{EI} = \frac{-5PL^{2}}{6EI}$$

 $\theta_{C} = \frac{T_{C'}}{EI} = \frac{PL^{2}}{6EI}$
 $f_{max} = \frac{M_{A'}}{EI} = \frac{2PL^{3}}{3EI} \le \frac{L}{1000} \Longrightarrow P \le \frac{EI}{2L^{2}}$

Exemple 2

Déterminer la flèche au point C et la rotation au point B de la poutre ci-contre.

Solution:

On détermine les aires des diagrammes des moments de chaque tronçon et les bras de levier par rapport à C.

$$F_1 = \frac{4}{3}qa^3$$
$$L_1 = \frac{3}{2}a$$

Le centre de gravité de la section 1: $\left(\frac{3L}{4}, \frac{L}{4}\right)$

136 RESISTANCE DES MATERIAUX DE BASE

L'aire de la section 1:
$$\Omega = \frac{hL}{3}$$

$$F_{2} = 2qa^{3}$$

$$L_{2} = \frac{5}{2}a$$

$$F_{3} = qa^{3}$$

$$L_{2} = \frac{5}{2}a$$

$$M_{c} = \sum F_{i}L_{i} \Rightarrow v_{c} = \frac{7qa^{4}}{EI}$$

$$T_{B} = F_{2} \Rightarrow \theta_{B} = \frac{2qa^{3}}{EI}$$

13.5 METHODES DES PARAMETRES INITIAUX (MacAulay)

La méthode des paramètres initiaux est basée sur le principe de la fonction discontinue pour la détermination d'une expression unique du moment fléchissant d'une poutre de plusieurs tronçons. L'intégration directe de cette expression résulte en deux constantes $C_1 = \theta_0$ et $C_2 = v_0$ qui s'avèrent être les paramètres initiaux.

Ainsi si on prend l'origine des coordonnées aux points situés à l'extrême gauche de la poutre, les expressions de v(x) et $\theta(x)$ sont données par les équations :

$$EI\theta(x) = EI\theta_{0} + \sum M \frac{(x-a)}{1!} + \sum P \frac{(x-b)^{2}}{2!} + \sum q_{c} \frac{(x-c)^{3}}{3!} - \sum q_{d} \frac{(x-d)^{3}}{3!} + \sum q_{c} \frac{(x-c)^{4}}{4!} - \sum q_{d} \frac{(x-d)^{4}}{4!} + \dots$$

$$EIv(x) = EIv_{0} + EI\theta_{0} \frac{x}{1!} + \sum \frac{M(x-a)^{2}}{2!} + \sum \frac{P(x-b)^{3}}{3!} + \sum \frac{q_{c}(x-c)^{4}}{4!} - \sum \frac{q_{d}(x-d)^{4}}{4!} + \sum \frac{q_{c}'(x-c)^{5}}{5!} - \sum \frac{q_{d}'(x-d)^{5}}{5!} + \dots,$$

Où :

M : moments concentrés extérieurs ou à l'encastrement

a : distance entre l'origine des coordonnées et les points d'application des moments M

p : les forces concentrées y compris les réactions

b : distances entre l'origine des coordonnées et les points d'application des forces P

 $\mathbf{q}_{c},\,\mathbf{q}_{d}$: respectivement, les intensités au début et à la fin de la charge répartie
q'_c , q'_d : respectivement, les valeurs des dérivées de q aux points x= c et x = d

Les directions des charges sont positives comme indiquées ci-dessous :

Fig. 13.8

Les deux paramètres initiaux v_0 et θ_0 sont déterminés par les conditions d'appui de la poutre.

13.5.1 Application

Déterminer la flèche maximale et les rotations aux appuis de la poutre représentée sur la Fig. 13.9.

Fig. 13.9

Solution

 $R_{\Lambda} = 10 \text{ kN}$

Par les équations de la statique on détermine les réactions aux appuis et on trouve:

$$R_{B}^{1} = 10 \text{ kN}$$

$$EI\theta(x) = EI\theta_{0} - \frac{10}{2}x^{2} + \frac{x^{3}}{6} - \frac{(x-12)^{3}}{6} + 2(x-4)^{2} + 32(x-8) - 5(x-12)^{2}$$

$$EIv(x) = EIv_{0} + EI\theta_{0}x - \frac{5}{3}x^{3} + \frac{x^{4}}{24} - \frac{(x-12)^{4}}{24} + \frac{2(x-4)^{3}}{3} + 16(x-8)^{2} - \frac{5}{3}(x-12)^{3}$$

$$EIv(0) = 0 \Rightarrow EIv_{0} \Rightarrow v_{0} = 0$$

$$EIv(12) = 0 \Rightarrow \theta_{0} = \frac{118.22}{EI}$$

$$\theta(0) = \theta_{0} = \frac{118.22}{EI}$$

$$\theta(12) = -\frac{57.78}{EI}$$

RESISTANCE DES MATERIAUX DE BASE 138

La flèche maximale :

 $\theta(x) = 0 \Rightarrow$ équation polynomiale de degré 3.

Х	0	4	8	12	16
$EI\theta(x)$	118.22	48.89	-84.4	-57.78	-25.78

Donc $\theta(x) = 0$ pour $x \in [4, 8[$

En utilisant la méthode de dichotomie, on converge vers x = 5.48

$$\Rightarrow$$
 v(5.48) = $+\frac{414}{EI}$

13.6 SUPERPOSITION DES DEFORMATIONS

Les équations différentielles de la déformée sont des équations linéaires c'està-dire tous les termes de v, v' et v" sont du premier ordre. Les déformations dues à plusieurs cas de charges peuvent être donc superposées ou cumulées. Cette méthode est surtout utilisée quand le chargement est composé de plusieurs cas de charge élémentaire ou les déformations sont données dans les aides mémoires de la RDM.

Exemple :

Déterminer la flèche maximale de la poutre cidessous.

Solution

$$f_{max} = f_q + f_p$$

$$f_q = \frac{qa^3(4L - a)}{24EI}$$

$$f_p = \frac{PL^3}{3EI}$$

$$f_{max} = \frac{PL^3}{2EI} + \frac{qa^3(4L - b)}{24EI}$$

3EI

24EI

EXERCICES / chapitre 13

13.1 Déterminer les équations des déformées et des rotations et calculer les valeurs caractéristiques des poutres de la Fig. E13.1.

✓ $(a)v_c = Pa^2(3L-a)/6EI,$ $\theta_b = -Pa^2/2EI$; (b) $v_b = qL^2/30EI,$ $\theta_b = -qL^2/24EI$

13.2 En utilisant les équations différentielles de la déformée, déterminer la flèche maximale d'une poutre simplement appuyée aux extrémités sous une charge uniformément répartie sur toute la longueur.

Si la poutre a une section symétrique en I, et constituée d'un matériau dont le module d'élasticité est de 185×10^9 N/m² avec une contrainte admissible de 125×10^6 N/m², montrer que la flèche maximale peut-être écrite sous la forme f_{max} = KL²/d, où L est la portée de la poutre et d la hauteur de la section. Trouver aussi la valeur de K.

✓ K=141x10-6

13.3 Soit une barre de section carrée de coté a, constituée d'un matériau de densité d. Elle est encastrée à une extrémité et libre à l'autre. Calculer sa longueur L pour que son poids propre ne provoque pas une flèche supérieure à L/200.

✓
$$L \le [EI / 25 dga^2]^{1/3}$$

13.4 Déterminer la charge maximale q uniformément repartie sur la console de la Fig. E13.4, sachant que la flèche admissible est de [f] = 10mm.

$$q \leq 538.5 \, N/m.$$

Fig. E13.4

13.5 Calculer la flèche d'une section située à 2.3 m de l'extrémité gauche de la poutre de la Fig. E13.5. On donne $E = 7x10^4$ N/mm², I = $6x10^6$ mm⁴.

$$f=64.2 mm$$

Fig. E13.5

13.6 Une poutre ABC de longueur L est simplement appuyée en A et B laissant le tronçon BC en porte à faux. La poutre qui se déforme sous l'effet de son poids propre devrait rester horizontale au niveau de B.

Déterminer la position de l'appui B.

 $\checkmark \quad AB = 2L/3$

13.7 Le déplacement d'un point B situé à L/3 de l'extrémité libre d'une console uniformément chargée est empêché par l'application d'une force R (Fig. E13.7).

Trouver la valeur de R et le rapport de l'angle de rotation à l'extrémité libre par rapport à celui du point B.

$$\checkmark$$
 R=17qL/24, $\theta_c/\theta_b = 1/3$

13.8 En utilisant la méthode de la poutre fictive, calculer la déformation et l'angle de rotation au point C de la poutre figurant sur Fig. E13.8.

✓ $\theta_c = 7qL3/48EI$, $V_c=41qL4/384 EI$

Fig. E13.8

13.9 Une poutre coudée est encastrée en A (Fig. E13.9). Sous l'action d'une force F la déformée prend la forme AB'C'.

Exprimer les flèches V_b et V_c ainsi que la rotation θ_b

Exprimer la flèche V_r si BC était infiniment rigide.

 $V_b = F(a^2b/2EI), \ \theta_b = F(ab/EI), \ V_c = F(b^2/EI)(a+b/3), \ V_r = b\theta_b = F(ab^2/EI)$

Fig. E13.9

Chapitre 14 POUTRES HYPERSTATIQUES

14.1 INTRODUCTION

On appelle poutres hyperstatiques, les poutres dont les réactions aux appuis ne peuvent pas être déterminées par les seules équations de la statique. Le degré d'hyperstaticité de la poutre est égal au nombre d'inconnues surabondantes par rapport au 3 équations d'équilibre de la statique. Les exemples de systèmes hyperstatiques sont nombreux: la majorité des structures portantes de génie civil sont hyperstatiques comme les portiques auto-stables, les poutres continues sur plusieurs appuis etc...(Fig. 14.1)

Fig. 14.1

14.2 METHODES DE RESOLUTION

Pour déterminer les réactions des poutres hyperstatiques, on utilise des équations supplémentaires établies par l'équation différentielle de la déformée aux conditions d'appuis qui permettent non seulement de déterminer les constantes d'intégration mais aussi d'avoir pour chaque inconnue surabondante une équation supplémentaire. On obtient ainsi les équations nécessaires à la résolution du système.

142 RESISTANCE DES MATERIAUX DE BASE

La procédure la plus simple consiste à supprimer les liaisons surabondantes pour rendre la poutre isostatique. On détermine ensuite les rotations et les déplacements aux niveaux des appuis sous l'effet des charges données et des inconnues hyperstatiques par l'une des méthodes usuelles telles que la méthode des paramètres initiaux ou de la poutre fictive.

R

= 0

14.2.1 Application (1) : Méthode des paramètres initiaux

Déterminer le moment maximale de la poutre hyperstatique ci-contre.

Solution:

On établit les équations de la déformée en fonction de la réaction R au point A.

$$EI\theta(x) = EI\theta_0 - R_A \frac{x^2}{2} + \frac{q}{L} \frac{x^4}{24}$$
$$EIv(x) = EIv_0 + EI\theta_0 x - R_A \frac{x^3}{6} - \frac{q}{L} \frac{x^3}{120}$$

Les trois conditions aux limites nous permettent de déterminer en plus des paramètres initiaux, la réaction R:

$$v(L) = 0 \qquad \theta(L) = 0 \qquad v(0) = 0$$
$$v(0) = 0 \Rightarrow v_0 = 0$$
$$v(L) = 0 \Rightarrow EIv(L) = 0 \Rightarrow EI\theta_0 L - R \frac{L^3}{6} + \frac{qL^4}{120}$$
$$\theta(L) = 0 \Rightarrow \qquad 0 = EI\theta_0 - R \frac{L^2}{2} + \frac{qL^3}{24}$$

 $R = \frac{qL}{10}$ $\theta_0 = \frac{qL^3}{120EI}$

Les expressions de l'effort tranchant et du moment fléchissant sont:

$$T = \frac{qL}{10} - \frac{q}{L} \frac{x^2}{2}$$
$$M_x = \frac{qL}{10} x - \frac{q}{L} \frac{x^3}{6}$$

$$T = 0 \Longrightarrow x = \frac{L}{\sqrt{5}} \rightarrow M_{max} = \frac{ql^2}{15\sqrt{5}}$$

14.2.2 Application (2) : Méthode de la poutre fictive

Déterminer les réactions de la poutre bi-encastrée ci-contre.

Solution:

En supprimant un encastrement et on le remplaçant par un moment et une force, la poutre devient isostatique.

On détermine le diagramme des moments et on transforme la poutre en poutre fictive on obtient alors:

 $T_{Af} = \frac{L}{2} \left(\frac{R_A L}{EI} \right) - \frac{M_A}{EI} (L) - \frac{M_0}{EI} (b)$

$$\theta_{A} = \frac{T_{Af}}{EI} = 0 \implies R_{A}L^{2} - 2M_{A}L = 2M_{0}b \quad (1)$$

$$M_{Af} = \frac{L}{2} \left(\frac{R_{A}L}{EI}\right) \left(\frac{L}{3}\right) - L \left(\frac{M_{A}}{EI}\right) \left(\frac{L}{2}\right) - b \left(\frac{M_{0}}{EI}\right) \left(\frac{M_{0}}{EI}\right)$$

$$V_{A} = \frac{M_{Af}}{EI} = 0 \implies R_{A}L^{3} - 3M_{A}L^{2} = 3M_{0}b$$

D'où :

Mu:

$$R_{A} = \frac{6M_{0}ab}{L^{3}}$$

$$M_{f} = \frac{M_{0}b}{L^{2}}(2a-b)$$

$$M_{f} = \frac{M_{0}b}{T_{f}}$$

$$K_{A} = \frac{M_{0}b}{L^{2}}(2a-b)$$

$$M_{f} = \frac{M_{0}b}{T_{f}}$$

14.3 POUTRES DROITES HYPERSTATIQUES (CONTINUES)

On envisage ici les poutres continues, c'est-à-dire les poutres comportant plusieurs travées sans articulations, et reposant sur des appuis simples. Le degré d'hyperstaticité de ce genre de poutres est de n-1, n étant le nombre de travées.

La méthode dite "*Théorème des trois moments ou théorème de Clapeyron*" permet de déterminer les moments sur appuis intermédiaires de la poutre continue.

Considérons la poutre continue de la Fig. 14.4. On décompose la poutre au droit des appuis, et on obtient ainsi n poutres simplement appuyées aux extrémités.

144 RESISTANCE DES MATERIAUX DE BASE

La continuité de la poutre impose que la rotation de la section au droit des appuis soit unique. On obtient ainsi un système de n-1 équations sous la forme :

$$M_{i-1}L_{i-1} + 2M_i(L_{i-1} + L_i) + M_{i+1}L_i = -6EI(\theta_i^g + \theta_i^a)$$

pour EI constant.

Où

M_{i-1}, M_ietM_{i+1} : Sont les moments aux appuis i-1, i et i+1

 L_{i-1} et L_i : travées des poutres adjacentes

 θ_i^g et θ_i^d : les rotations au niveau de l'appui i des poutres gauches et droites

dues seulement aux charges, agissant dans les travées respectives.

Les valeurs de θ_i^g , θ_i^d peuvent être déterminées par n'importe quelle méthode.

Pour des cas de charges simples on utilise la méthode des poutres fictives, qui donne directement les valeurs des rotations sous les formes:

$$\theta_i^g = \frac{A_{i-1} x_{i-1}}{l_{i-1}} \qquad \qquad \theta_i^d = \frac{A_i x_{i-1}}{l_i}$$

Le sens des rotations est pris comme suit:

 $\theta_i^g > 0$ dans le sens trigonométrique

 $\theta_i^d > 0$ dans le sens des aiguilles d'une montre

Fig. 14.4

Dans le cas d'une poutre continue ayant une extrémité encastrée ou en console, on supprime la console et on la remplace par un effort tranchant égal à la résultante de toute les charges sur cette console et un moment égal au moment résultant de ces charges, appliqués à l'appui de rive. L'encastrement est transformé en une travée de longueur L = 0. La première équation s'écrira dans ce cas:

$$2M_iL_i + M_iL_i = -6EI\theta_i^d$$

On résout le système d'équation (14-1) et on obtient ainsi les moments aux appuis, ensuite on procède au calcul des réactions aux appuis par la formule suivante:

$$R_{i} = R_{i}^{o} + \frac{M_{i-1} - M_{i}}{l_{i-1}} + \frac{M_{i+1} - M_{i}}{l_{i}}$$

Où R_i : la réaction au niveau de l'appui i

 R_i^o : la somme des réactions à l'appui i des deux poutres adjacentes, dues seulement aux charges données

- La travée fictive de l'encastrement n'est pas prise en compte

- Les charges sur la console sont incluses dans le calcul de R_i^o qui est égale à la résultante de toutes les forces extérieures agissant sur la console.

Remarque :

Le tracé des diagrammes des efforts internes et la détermination des déformations et rotations d'une section arbitraire peuvent être établis pour chaque travée comme pour une poutre simplement appuyée aux extrémités et soumise aux forces données et aux moments aux appuis déterminés par la méthode des 3 moments. Toutes les méthodes utilisées pour le calcul des poutres isostatiques sont bien sûr applicables dans ce cas.

14.3.1 Application

Tracer le diagramme de l'effort tranchant et du moment fléchissant de la poutre continue ci- dessous.

146 RESISTANCE DES MATERIAUX DE BASE

Solution:

1/ Décomposition de la poutre:

On réduit la console et on remplace l'encastrement par la travée fictive, on obtient la poutre continue ci-contre:

2/ Equations des moments :

n = 2

$$M_1l_1 + 2M_2(l_1 + l_2) + M_3l_2 = -6EI(\theta_2^g - \theta_2^d)$$

n = 3

$$M_2 l_2 + 2M_3 l_2 = -6EI\theta_3^{g}$$

3/ Détermination des rotations : poutre fictive:

$$EI\theta_2^g = T_f = \frac{Ml_1}{3} = 4kN.m^2 \quad (S \text{ d'un triangle})$$
$$EI\theta_2^d = EI\theta_3^g = \frac{ql_2^3}{24} = 2kN.m^2 \quad (S \text{ d'une parabole} = \frac{2hl}{3})$$

Les équations des moments deviennent:

$$10M_2 + 2M_3 = -30$$

 $M_2 + 2M_3 = -6$

D'où :

$$M_2 = -\frac{8}{3} = -2.67$$
 kN.m et $M_3 = -\frac{5}{3} = -1.67$ kN.m

4/ Détermination des réactions :

$$R_{1} = R_{1}^{0} + \frac{M_{2} - M_{1}}{l_{1}} = P + \frac{M}{l_{1}} + \frac{M_{2} - M_{1}}{l_{1}} = 3.11 \text{kN}$$

$$R_{2} = R_{2}^{0} + \frac{M_{1} - M_{2}}{l_{1}} + \frac{M_{3} - M_{2}}{l_{2}}$$

$$= -\frac{M}{l_{1}} + \frac{ql_{2}}{2} + \frac{M_{1} - M_{2}}{l_{1}} + \frac{M_{3} - M_{2}}{l_{2}} = 5.389 \text{kN}$$

$$R_{3} = R_{3}^{0} + \frac{M_{2} - M_{3}}{l_{2}} = \frac{ql_{2}}{2} + \frac{M_{2} - M_{3}}{l_{2}} = 5.5 \text{kN}$$

-Construction du diagramme de l'effort tranchant et du moment fléchissant par la méthode directe.

Le moment maximal sur la travée L₃ :

$$T(x) = 0 \Rightarrow \frac{5.5}{x} = \frac{6.5}{L_2 - x} \Rightarrow 5.5L_2 - 5.5x = 6.5x$$

$$\Rightarrow x = \frac{5.5L_2}{6.5 + 5.5} = \frac{5.5 \times 2}{6.5 + 5.5} = 0.92m$$

$$M_x = M_3 + \frac{qx^2}{2} + Rx$$

$$M_{max} = -1.667 + \frac{6(0.92)^2}{2} = 0.87kN.m$$

148 RESISTANCE DES MATERIAUX DE BASE

EXERCICES / chapitre 14

14.1 Déterminer les réactions aux appuis des poutres suivantes.

✓ a) $R_a = P + 3Pa/2L$ $M_b = Pa/2$ b) $R_a = 16qa/27$ $M_a = 4qa^2/9$ $R_b = 38qa/27$ $M_b = 3qa^2/2$ c) $R_a = R_c = 3qL/8$ $R_b = 5qL/4$

Fig. E14.1

14.2 Tracer les diagrammes de l'effort tranchant et du moment fléchissant des poutres suivantes.

 $\checkmark \qquad (a) M_{max} = 7qa^2/32 \\ T_{max} = 41qa/63 \\ (b) M_{max} = Pa \quad T_{max} = 4P/3 \end{cases}$

Fig. E14.2

14.3 Une poutre AB de longueur L est encastrée aux extrémités. Elle supporte une charge P appliquée à une distance a de l'encastrement A. Montrer que les moments aux encastrements peuvent s'écrire sous les formes suivantes: $M_a = bM_f/L$ et $M_b = aM_f/L$; où $M_f = (Pab)/L$ est le moment maximale d'une poutre équivalente et simplement appuyée.

14.4 Une poutre ABC (figure E14.4) est simplement appuyée sur A et B, et attachée par un câble extensible au point C. Déterminer la tension du câble sous l'effet d'une charge uniformément repartie sur toute la longueur de la poutre.

$$T = 3qAL4/(8AL3 + 12hI)$$
.

Fig. E14.4

14.5 Déterminer le tassement différentiel de l'appui intermédiaire par rapport aux appuis de rives de la poutre (c) de la figure E14.1 qui permet d'avoir toutes les réactions égales.

14.6 Tracer les diagrammes de l'effort tranchant et du moment fléchissant de la poutre continue de la figure E14.6 en déduisant les efforts dans les sections dangereuses.

✓ $R_1 = 17.63kN$, $R_2 = 24.44kN$, $R_3 = 5.93kN$, $T^+ = 17.63kN$, T^- = -22.37kN, $M_{max}^+ = 15.44kN.m$, $M_{max}^- = -14.22kN.m$

14.7 Déterminer les réactions aux appuis de la poutre continue cicontre (Fig. E14.7).

✓ $R_a = 13qL/30, R_b = 13qL/20, R_c = qL/10, R_d = qL/60$

14.8 Déterminer la réaction de l'appui B (Fig. E14.8) si au cours du chargement de la poutre, cet appui s'affaisse de 3 mm. On donne EI = 4. x 106 N.m²

$$\checkmark$$
 $R_b = 10.42 \ kN$

Fig. E14.7

Fig. E14.8

0 RESISTANCE DE MATERIAUX DE BASE

SUJET 1

EXERCICE 1

Déterminer les moments d'inertie centraux et principaux de la section composée de la figure 1. Orienter les axes principaux sur la section et tracer le cercle de Mohr en utilisant les valeurs des moments d'inertie des axes initiaux et principaux.

Figure 1

EXERCICE 2

Déterminer l'orientation et les valeurs des contraintes normales principales et les contraintes tangentielles maximales de l'état de contrainte schématisé sur la Figure 2

 $(\sigma_x = -50 \text{ N/mm}^2, \sigma_y = 10 \text{ N/mm}^2, \tau_{xy} = -40 \text{ N/mm}^2)$. Orienter les axes principaux sur la facette initiale et montrer sur le cercle de Mohr les valeurs de ces contraintes et l'angle de l'axe principal (1).

Figure 2

Source: www.almohandiss.com

150

EXERCICE 3

Tracer les diagrammes de l'effort tranchant, normal et moment fléchissant de l'arc de cercle tri-articulé de la Figure 3 et déduire les valeurs maximales de ces efforts.

Figure 3

152 RESISTANCE DES MATERIAUX DE BASE

SUJET 2

EXERCICE 1

Trouver une relation entre la distance b et le rayon r de la section composée (Figure 1b) pour que le moment produit I_{ZV} soit nul.

Déterminer les valeurs et l'orientation des moments principaux centraux pour b = 100 mm et r = 80 mm.

On donne les caractéristiques géométriques d'une section en demi cercle de rayon r (Figure 1a): $S_x = \pi r^2/2$, $y_g = 4r / 3\pi$, $x_g = 0$, $I_x = \pi r^4 / 8$, $I_y = \pi r^4 / 8$.

Figure 1

EXERCICE 2

Tracer les diagrammes des efforts internes du portique articulé en B (Figure 2) sous le cas de charge indiqué.

Figure 2

EXERCICE 3

A l'aide d'une rosette à 45° fixée sur une plaque métallique soumise à des contraintes normales uniformes σ_x et σ_y (Figure 3), on mesure les déformations

 $\varepsilon_{\rm X} = 220 \times 10^{-6}$, et $\varepsilon_{\rm V} = 160 \times 10^{-6}$.

1. Déterminer les contraintes σ_X et σ_V .

2. Quelle est la valeur de la déformation relative mesurée par la jauge B orientée à 45° .

3. Quelle est la valeur de la contrainte tangentielle maximale.

4. Si la plaque est de 1.5 m de long, 1 m de large et 0.20 m d'épaisseur, déterminer le changement du volume de la plaque.

154

RESISTANCE DES MATERIAUX DE BASE

SUJET 3

EXERCICE 1

Un élément de structure de 600 mm de long est constitué d'une barre d'acier de 0.2 m de long et de 30 mm de diamètre, coaxialement soudée à une autre barre en cuivre de 400 mm de long.

Déterminer le diamètre de la barre en cuivre permettant d'obtenir des allongements égaux dans les deux barres, sous l'action d'une force axial de tension de 20 kN.

Déterminer dans ce cas les contraintes normales dans chaque matériau.

 $E_{acier} = 2 \times 10^5 \text{ N/mm}^2$, $E_{cuivre} = 1.1 \times 10^5 \text{ N/mm}^2$).

EXERCICE 2

Une poutre en bois lamellécollé est constituée de 3 bandes de section de 200mm x 400mm chacune (Figure 2). La contrainte admissible de cisaillement des faces collées est de 20 N/mm².

Déterminer la force maximale P qu'on peut appliquer à l'extrémité libre d'une console de 2 m de long sans provoquer de glissement entre les bandes. Quelle est la contrainte normale maximale dans ce cas.

EXERCICE 3

Un arbre AB de longueur L est encastré à ses deux extrémités. Les diamètres des parties AC et BC sont d_a et d_b respectivement. Quelle est la longueur AC permettant une utilisation rationnelle du matériau (pour que les contraintes atteignent la limite admissible dans les deux tronçons simultanément) lorsque cet arbre est soumis à un moment de torsion M au point C.

EXERCICE 4

Une cheminée est construite en maçonnerie de densité de 2000 kg/m³. Les diamètres intérieur et extérieur sont de 4 m et 5 m respectivement.

Déterminer la hauteur maximale de la cheminée, si on veut éviter toute contrainte de traction au niveau de la base sous l'effet d'une pression de vent supposée constante sur la largeur de l'aire projetée de la cheminée et variant linéairement sur la hauteur suivant la loi: $P = 0.03H \text{ kN/m}^2$,

où H est la hauteur mesurée à partir de la base de la cheminée.

RESISTANCE DES MATERIAUX DE BASE

SUJET 4

EXERCICE 1

Déterminer la valeur maximale de q si la flèche admissible à l'extrémité libre de la poutre de la Figure 1 est limitée à L/100.

Figure 1

EXERCICE 2

Quelle est la capacité du monte-charge P_{max} schématisé sur la Figure 2 sachant que les sections des barres sont rectangulaires de 150 x 200 mm².

Quel est le rapport de la capacité d'un même montecharge constitué de barres tubulaires ayant les mêmes aires que celles des sections rectangulaires, avec des diamètres intérieurs égaux à 100 mm. On donne :

 $E = 2 \times 10^5 \text{ N/mm}^2$, [σ $] = 160 \text{ N/mm}^2$

Figure 2

Source: www.almohandiss.com

156

EXERCICE 3

Soit une poutre continue reposant sur 4 appuis dont les longueurs des travées sont respectivement KL, 2L, et L (Figure 3); K étant un nombre réel quelconque.

1) En utilisant la méthode des trois moments, Calculer les expressions des moments aux niveaux des appuis.

2) Etablir les diagrammes des efforts tranchants et moments fléchissants en considérant l'appui 2 une fois comme encastré ensuite comme appui double de rive. Comparer les flèches au milieu de la travée 3-4.

Figure 3

158 RESISTANCE DES MATERIAUX DE BASE

SUJET 5

EXERCICE 1

La Figure 1 représente la section droite d'un massif en béton. Déterminer le centre de gravité de cette section, l'orientation et les valeurs des moments principaux passant par l'origine O et tracer le cercle de Mohr correspondant.

EXERCICE 2

Le système de la Figure 2 repose sur deux appuis doubles en A et E et il est articulé au point B. Tracer les diagrammes des efforts internes sous le cas de charge indiqué.

EXERCICE 3

Un cas de charge provoque un état de contrainte en un point d'une structure. Les caractéristiques mécaniques du matériau (E, v) et les contraintes normales qui agissent sur les facettes d'un élément plan sont supposées connues.

Peut-on déterminer les contraintes tangentielles correspondant à cet état de contrainte plan en utilisant une seule jauge électrique?.

Si oui, décrire la manière la plus simple qui permet de définir complètement cet état de contrainte, et déduire l'expression de la contrainte tangentielle dans ce cas.

) RESISTANCE DES MATERIAUX DE BASE

SUJET 6

EXERCICE 1

L'arbre de la Figure 1 est constitué d'une barre en cuivre à l'interieur d'un cylindre creux en acier. Vérifier la résistance de l'arbre sous l'effet d'un moment de torsion $M_x = 10$ kN.m appliqué à l'extrémité libre de la console, et déterminer la rotation maximale sachant que le cuivre et l'acier sont solidaires.

On donne: $E_{acier} = 2.1 \times 10^5 \text{ N/mm}^2$, $[\tau]_{acier} = 80 \text{ N/mm}^2$, $E_{cuivre} = 0.7 \times 10^5 \frac{10^5 \text{ N/mm}^2}{\text{N/mm}^2}$, $[\tau]_{cuivre} = 50 \text{ N/mm}^2$, et le coefficient de Poisson pour les deux matériaux v = 0.3.

Figure 1

EXERCICE 2

Déterminer l'expression de l'effort normal dans la barre bi-encastrée de la figure 2 sous l'effet d'une variation de température ΔT . Le coefficient de dilatation thermique α et le module d'Young E sont supposés connus.

Figure 2

Source: www.almohandiss.com

160

EXERCICE 3

Déterminer les angles d'inclinaisons ϕ de la force P excentrée par rapport à un seul axe (Figure 3) pour:

1- Eviter toute contrainte de compression au niveau de l'encastrement.

2- Avoir une distribution uniforme des contraintes au niveau de l'encastrement

Comparer les contraintes maximales dans les deux cas sachant que:

 $P = 10 \times 10^6$ N, L = 1m, e = 18 cm et la section est carrée de coté a = 40 cm.

EXERCICE 4

Une console de section rectangulaire bxh est uniformément chargée. La contrainte normale admissible [σ], la contrainte tangentielle admissible [τ] et le module d'élasticité E sont donnés.

-Déterminer l'expression de la longueur limite L_0 au-dessous de laquelle la condition de résistance au cisaillement est prépondérante et au-dessus de laquelle la condition de résistance aux contraintes normales dûes à la flexion est prépondérante.

-Quelle est la longueur limite pour laquelle la console est élastiquement instable sous l'effet d'une force axiale P appliquée à l'extrimité libre (sans la charge uniforme).

RESISTANCE DES MATERIAUX DE BASE

SUJET 7

EXERCICE 1

Déterminer l'effort maximal dans les barres d'un élévateur en treillis sous l'effet d'une charge de 20 kN (Figure 1). Quelle est la valeur de l'effort maximal pour un appui simple en A?

EXERCICE 2

Soit une poutre en acier (E= $2.1 \times 10^5 \text{N/mm}^2$) de section carrée de 150mm x 150mm reposant sur un appui simple en A et encastrée en B.

a- Tracer les diagrammes de l'effort tranchant et du moment fléchissant.

b- Déterminer le tassement de l'appui A si le sol en ce point est élastique avec une raideur equivalente K= 2.4×10^3 kN/m. Déduire la flèche en A si l'appui en ce point est inexistant.

Source: www.almohandiss.com

162

Comparer les réactions à l'encastrement dans les trois cas (appui simple, avec tassement et sans appui).

Figure 2

164 RESISTANCE DES MATERIAUX DE BASE

SUJET 8

EXERCICE 1

En utilisant les équations différentielles de la déformée, déterminer la flèche maximale d'une poutre reposant sur deux appuis: simple et double, et soumise à une charge uniformément répartie sur toute sa longueur.

Si la poutre a une section symétrique en I, et constituée d'un matériau dont le module d'élasticité est de 185×10^9 N/m², la contrainte admissible est de 125×10^6 N/m², montrer que la flèche maximale peut-être écrite sous la forme f_{max} = KL² / d, où L est la portée de la poutre et d la hauteur de la section. Trouver la valeur de K.

EXERCICE 2

Le treillis représenté dans la Figure 1 est destiné à supporter une charge P pouvant pivoter autour de l'axe de rotation du noeud B.

1- Déterminer les efforts dans les barres du treillis quand la direction de la charge P est inclinée d'un angle α par rapport à la verticale.

2- Si les directions les plus défavorables de la charge P coïncident avec $\alpha = 45^{\circ}$ et 90°, déterminer la valeur maximale P_{max} que le système puisse supporter sachant que toutes les barres sont en bois de sections carrées de 15 cm de coté, $[\sigma_{-}] = 70 \text{ kgf/cm}^2$, $[\sigma_{+}] = 100 \text{ kgf/cm}^2$, $E = 10^5 \text{ kgf/cm}^2$, $n_{st} = 2$, $\lambda \lim_{t \to \infty} 100 \text{ kgf/cm}^2$, $n_{st} = 2$, $\lambda \lim_{t \to \infty} 100 \text{ kgf/cm}^2$, $n_{st} = 100 \text{ kgf/cm}^2$, $n_{st} = 2$, $\lambda \lim_{t \to \infty} 100 \text{ kgf/cm}^2$, $n_{st} = 100 \text{ kgf/cm}^2$, $n_{st} = 2$, $\lambda \lim_{t \to \infty} 100 \text{ kgf/cm}^2$, $n_{st} = 100 \text{ kgf/cm}$

EXERCICE 3

Soit la poutre hyperstatique de la Figure2. Etant donnés P = 2 t, q = 1 t/ml, et a = 1 m; déterminer les réactions aux appuis et la flèche maximale.

6 RESISTANCE DES MATERIAUX DE BASE

SUJET 9

EXERCICE 1

Soient deux colonnes de même hauteur L, l'une est constituée de deux barres parallèles, et l'autre de deux tronçons de barres coaxiallement soudés, chaque barre supporte une force de compression P (Figure 1).

- Etant données $E_1 = 200 \text{ kN/mm}^2$, $E_2 = 120 \text{ kN/mm}^2$, $A_1 = 2400 \text{ mm}^2$, $A_2 = 3500 \text{ mm}^2$, $L_1 = 1 \text{ m}$, $L_2 = 2 \text{m}$ et P = 75 kN.

1) Calculer les efforts axiaux et les déformations dans chaque barre (et tronçon).

2) Déterminer l'expression de la rigidité équivalente K = EA / L pour le cas d'un système de n barres parallèles, et pour le cas de n tronçons en série en fonction des rigidités $K_i = E_i A_i / L_i$ de chaque tronçon.

figure 1

Source: www.almohandiss.com

166

EXERCICE 2

Une structure est composé d'une poutre horizontale AB articulée au point B à une autre poutre dont la ligne moyenne décrit un quart de cercle BC (Figure 2).

1) Tracer les diagrammes de l'effort normal, l'effort tranchant et du moment fléchissant sous le cas de charge représenté sur la Figure 2.

2) La poutre AB a une section en T de 60 mm de hauteur, 25 mm de largeur, et de 5 mm d'épaisseur de l'âme et de la semelle.

Quelle est la disposition rationnelle de la section de la poutre AB (a ou b). Vérifier dans ce cas sa résistance. On donne le module d'élasticité $E = 200 \text{ kN/mm}^2$ et la contrainte admissible

 $[\sigma] = 130 \text{ N/mm}^2$.

3) Pour la poutre en arc on utilise une section rectangulaire du même matériau et ayant le rapport h / b = 2.5. En supposant que la section dangereuse coïncide avec le moment fléchissant maximal et en négligeant l'effet de l'effort tranchant au niveau de cette section, calculer la hauteur h.

Les formes des sections sont-elles bien choisies en fonction du type et de l'intensité des sollicitations dans la poutre et l'arc?

8 RESISTANCE DES MATERIAUX DE BASE

SUJET 10

EXERCICE 1

Un cylindre creux de diamètre extérieur D = 20 mm et intérieur d = 16 mm est sollicité par un effort axial de traction égal à 10 kN et un moment de torsion de 60 N.m.

1. Définir l'état de contrainte supposé plan au point A, c.a.d déterminer σ_x , σ_v , τ_{xv} (Figure 1). Tracer le cercle de Mohr correspondant.

2. Vérifier la résistance de l'élément au point A, en utilisant le premier, le deuxième, et le troisième critère de résistance, sachant que le module d'élasticité $E = 210 \text{ kN/mm}^2$, la contrainte normale admissible $[\sigma] = 160 \text{ N/mm}^2$, la contrainte tangentielle admissible

 $[\tau] = 80$ N/mm², la déformation admissible $[\varepsilon] = 10^{-3}$ et le coefficient de Poisson v =0.3.

Source: www.almohandiss.com

168

EXERCICE 2

Un portique ABC est articulé au point C et relié à une colonne CD de section circulaire de diamètre d.

1) Tracer les diagrammes de l'effort normal, l'effort tranchant et du moment fléchissant sous le cas de charge représenté sur la Figure 2.

2) Le portique ABC a une section rectangulaire creuse de 120 mm de hauteur, 60 mm de largeur, et 10 mm d'épaisseur.

Vérifier la résistance du portique ABC, et dimensionner la colonne CD à la stabilité sachant que le module d'élasticité $E = 210 \text{ kN/mm}^2$, la contrainte admissible [σ] = 160 N/mm², le coefficient de stabilité n_{st} = 2 et λ_{lim} = 100.

Figure 2

170 RESISTANCE DES MATERIAUX DE BASE

SUJET 11

EXERCICE

Vérifier la résistance de la poutre (a) sachant que la forme de sa section droite est un triangle isocèle de hauteur h = 120 mm et de base b = 60 mm, constituée d'un matériau ayant la contrainte admissible de compression $[\sigma_-] = 200 \text{ N/mm}^2$ et de traction $[\sigma_+] = 300 \text{ N/mm}^2$.

- La poutre résiste-t-elle si on découpe la section de 15 mm à partir du sommet (Figure 1.b)? Commenter les résultats obtenus.

- Déterminer le rapport de la flèche maximale dans les deux cas (section triangulaire et trapézoïdale).

- Comparer le moment maximal de la poutre (a) avec celui de (c) quand on remplace l'articulation C et l'extrémité libre A par des appuis simples.

- Comment peut-on déterminer le module d'élasticité du matériau de la poutre à l'aide d'une seule jauge électrique (1 seule mesure de déformation)?

NB: Les questions sont independantes.

Figure 1

SUJET 12

EXERCICE 1

Soit un poteau de la communication de grande hauteur (antenne) constitué de 3 parties de sections cylindriques ayant les diamètres extérieurs D_1 , D_2 , et D_3 et le diamètre intérieur d.

Le poteau est situé au Sahara, sous l'effet du changement de température les trois parties subissent des allongements verticaux Δh_1 , Δh_2 et Δh_3 . Pour la stabilité verticale du poteau on est obligé de le fixer par des câbles en acier de diamètre égal à 10 mm. les lignes moyennes des câbles sont confondues avec les axes des forces tenant le poteau et supposées agir sur l'axe du poteau (Figure 1).

Verifier la résistance des câbles et la stabilité de chaque tronçon du poteau considéré comme encastré aux extremités.

On donne:

172 RESISTANCE DES MATERIAUX DE BASE

EXERCICE 2

Pour le matériaux de la poutre en T (Figure 2) la limite élastique en traction est 2 fois celle de la compression.

Calculer la hauteur h de la section qui permet une utilisation rationnelle du matériau lors d'une sollicitation en flexion. (c.a.d) les contraintes dans les fibres extrêmes tendues et comprimées atteignent leurs limites admissibles en même temps.)

Figure 2
SUJET 13

EXERCICE 1

Soit un portique ABC composé de deux éléments: AC est une poutre curviligne, dont la ligne moyenne décrit 1/4 de cercle, est simplement appuyée en A et articulée en C.

BC est une poutre inclinée, encastrée en B et articulée en C.

Ecrire les expressions analytiques et tracer les diagrammes des efforts internes sous l'effet d'une charge uniformément répartie (Figure 1).

EXERCICE 2

Déterminer l'aire et le moment d'inertie de la section droite I_Z d'une bande de plaque métallique ondulée de largeur L utilisée comme coffrage perdu dans les planchers collaborants.

L'épaisseur de la plaque e est constante suivant yy (Figure 2) et la ligne moyenne des ondulations est exprimée par: $y = A \cos \omega z$.

174 RESISTANCE DES MATERIAUX DE BASE

Figure 2

EXERCICE 3

Pourquoi le flambement d'une poutre droite soumise à la compression est considéré comme un phénomène d'instabilité?

SUJET 14

EXERCICE 1

Dimensionner le système en treillis schématisé sur la Figure 1, sachant que la section des barres est circulaire, la contrainte admissible [σ] = 160 N/mm², le module d'élasticité E = 2.1 × 10⁵ N/mm², le coefficient de stabilité n_{st} = 2 et λ lim = 100.

Figure 1

EXERCICE 2

Classer les formes des sections des poutres de la Figure 2 en fonction de leurs efforts de résistance maximale à la flexion pure, à l'effort tranchant, au cisaillement, à la torsion et à la stabilité élastique (compression); Sachant qu'elles sont constituées du même matériau et leurs aires des sections sont égales.

Figure 2

176 RESISTANCE DES MATERIAUX DE BASE

SUJET 15

EXERCICE 1

Vérifier la résistance et la rigidité de la console ci-dessous, étant données:

 $[\sigma_{-}]$ = 30 N/mm², $[\sigma_{+}]$ = 10 N/mm², E = 1.8×10⁴ N/mm², $[f_{y}]$ = L / 300 et le diamètre

D = 400 mm.

EXERCICE 2

Déterminer le noyau central de la section en T représentée sur la Figure 2.

SUJET 16

ENNONCE

Etablir l'organigramme (schéma logique) et écrire le programme en BASIC correspondant pour dimensionner à la stabilité élastique un élément soumis à la compression. La forme de la section peut être circulaire ou rectangulaire (pleine ou creuse).

Les données constantes:

- Tableau de $\varphi(\lambda)$ pour l'acier et le bois.

λ	0	10	20	30	40	50	60	70
Acier doux	1.00	0.98	0.96	0.94	0.92	0.89	0.86	0.81
Bois	1.00	0.97	0.93	0.90	0.87	0.79	0.71	0.60

80	90	100	110	120	130	140
0.75	0.69	0.6	0.52	0.45	0.40	0.36
0.49	0.38	0.31	0.25	0.22	0.18	0.16

- Les caractéristiques mécaniques $E_{\alpha} = 2.1 \times 10^5 \text{ N/mm^2}, \ [\sigma_{-}] = 160 \text{ N/mm^2}$

 $E_b = 1 \times 10^4 \text{ N/mm^2}, [\sigma_{-}] = 12 \text{ N/mm^2}.$

Les données variables:

- La longueur de l'élément *L*, le rapport b/h des sections rectangulaires, l'épaisseur *e* des sections creuses et le coefficient de fixation μ .

- La charge appliquée P.

- La précision ε

Résultats:

Les dimensions de la section.

178 RESISTANCE DES MATERIAUX DE BASE

SUJET 17

EXERCICE 1

Soit deux poutres de toitures: (a) est un demi-cercle de rayon R et (b) est composée de deux versants inclinés. A et B sont des appuis doubles, C est une articulation.

Ecrire les expressions analytiques et tracer les diagrammes des efforts internes sous l'effet d'une charge uniformément répartie (Figure 1).

Déduire les valeurs maximales du moment fléchissant et des efforts tranchant et normal dans chaque poutre.

EXERCICE 2

Déterminer les moments d'inertie centraux et principaux de la section droite (a) en forme de S. Que deviennent les moments de la section composée totale et l'orientation des axes centraux et principaux. Tracer les cercles de Mohr des deux cas sur le même plan.

Que peut-on déduire lorsque le cercle de Mohr est plus petit?

Figure 2

180 RESISTANCE DES MATERIAUX DE BASE

SUJET 18

EXERCICE 1

Soit une poutre ABC encastrée en A, sur appui simple en C. La poutre est chargée par une force F appliquée en B. La section de la poutre vaut $a \times b$ entre A et B et $a \times b'$ entre B et C avec b' = αb et a = b/5, $0 < \alpha < \infty$

1) - Calculer en fonction de α , b, L, et F les réactions, en particulier la réaction en C appelée Y sera obtenue sous la forme: Y = β F, la valeur de β sera explicitée, ses valeurs limites définies et commentées.

2) - Tracer les diagrammes des efforts internes pour une valeur de $\alpha = 0.5$.

EXERCICE 2

Déterminer la force critique d'une colonne de hauteur 6.10 m articulée aux

extremités et ayant une section droite composée de deux profiles en U (13× 300) renforcés par deux plaques de

13×300 mm. On donne les caractéristiques du profile en U:

A = 71 cm², $I_x = 9075$ cm⁴, $I_y = 568$ cm⁴

Figure 2

SUJET 19

EXERCICE 1

Une poutre simplement appuyée ayant une section en I, de hauteur h = 375 mm et de moment d'inertie I = 1.8×10^{-4} m⁴, est soumise à une charge uniforme de 25 kN/m.

Déterminer la longueur maximale de la travée qui vérifie les deux conditions: La résistance à la flexion et la rigidité, sachant que la contrainte normale admissible [σ] = 140 N/mm², la flèche admissible [f] = L/400 et E = 2 × 10⁵ N/mm².

EXERCICE 2

Le contreventement d'une structure en bois de 3 étages est assuré par la palée de stabilité ci-dessous. Dimensionner les diagonales en section circulaire pleines.

On donne E = 10^4 N/mm², $[\sigma_{-}] = 10$ N/mm² et $[\sigma_{+}] = 20$ N/mm².

182 RESISTANCE DE MATERIAUX DE BASE

SUJET 20

EXERCICE 1

Une poutre en console de section rectangulaire $160 \times 100 \text{ mm}^2$ est soumise à une force concentrée P = 40 KN appliquée à l'extrémité libre. Calculer les contraintes principales, la contrainte tangentielle maximale et leurs orientations au point A situé à une distance de 0.5 m de l'extrémité libre et 40 mm de la base de la section (figure 1).

EXERCICE 2

Une barre en acier ABC est encastrée aux extrémités. Les deux tronçons AB et BC ont une section circulaire de diamètre respective 20 mm et 10 mm et de longueur 750 mm et 250 mm.

Au point B on applique un moment de torsion qui provoque une contrainte tangentielle maximale dans le matériau de 40 N/mm².

Calculer l'intensité du moment de torsion et l'angle de rotation au point d'application du moment. On donne $G = 75 \text{ kN/mm}^2$.

EXERCICE 3

Définir le noyau central d'une section et son intérêt dans la pratique.

SUJET 21

EXERCICE 1

On considère la structure en treillis, géométriquement symetrique par rapport à la verticale passant par E, constituée de barres de section circulaire pleine (Figure 1).

1- Déterminer les réactions d'appuis.

2- Calculer les efforts des barres sous l'action des forces horizontales.

3- Dimensionner la section à la résistance et à la stabilité sachant que:

 $E = 2 \times 10^5 \text{N/mm}^2$, $[\sigma_-] = [\sigma_+] = 120 \text{ N/mm}^2$.

4- Quel est le critère prépondérant et pourquoi? Proposer une solution pour réduire la dimension de la section des barres. On peut tolérer quelques modifications de la disposition des membrures tout en gardant le même matériau de la structure.

- Tableau de $\varphi(\lambda)$ pour l'acier.

λ	0	40	60	80	90	100	110	120	130	140
φ	1.00	0.92	0.86	0.75	0.69	0.6	0.52	0.45	0.40	0.36

150	160	170	180	190	200
0.32	0.29	0.26	0.23	0.21	0.19

4 RESISTANCE DE MATERIAUX DE BASE

Figure 1

EXERCICE 2

En utilisant la méthode des poutres fictives calculer la rotation au niveau de l'appui A.

On donne $EI = 120 \text{ kNm}^2$.

SUJET 22

EXERCICE

La poutre en arc de la figure ci-dessous est constituée de deux quarts de cercles. Les extrémités A et B sont des appuis doubles et le point C est une articulation.

Tracer les diagrammes des efforts internes et vérifier la résistance au niveau de la section correspondant au moment fléchissant maximal absolu.

 $[\sigma_{-}] = 80 \text{ N/mm}^2 \text{ et } [\sigma_{+}] = 120 \text{ N/mm}^2.$

RESISTANCE DES MATERIAUX DE BASE

CORRIGE DU SUJET 1

CORRIGE DE L'EXERCICE 1

On subdivise la section en trois rectangles de 120 mm × 20 mm et un autre de 240 mm \times 20 mm.

- Le centre de gravité de la section:

$$Y_{G} = \frac{\sum y_{i}S_{i}}{\sum S_{i}} = \frac{2 \times 50 \times 2400}{3 \times 120 \times 20 + 240 \times 20} = 20 \text{mm}$$

$$Z_{G} = \frac{\sum z_{i}S_{i}}{\sum S_{i}} = \frac{90 \times 240 \times 20}{3 \times 120 \times 20 + 240 \times 20} = 36 \text{mm}$$

- Les moments d'inertie centraux:
$$I_{y} = \sum I_{yi} + \sum S_{i}a_{i}^{2}$$

$$I_{z} = \sum I_{zi} + \sum S_{i}b_{i}^{2}$$
$$I_{yz} = \sum I_{yzi} + \sum S_{i}a_{i}b_{i}$$

 $I_{y} = \frac{20 \times 120^{3}}{12} + 2 \times \frac{120 \times 20^{3}}{12} + \frac{240 \times 20^{3}}{12} + 2400 \times 36^{2} + 2400 \times 34^{2} + 2400 \times 106^{2} + 4800 \times 54^{2} = 50.05 \times 10^{6} \text{ mm}^{4}$ $I_{z} = \frac{120 \times 20^{3}}{12} + 2 \times \frac{20 \times 120^{3}}{12} + \frac{20 \times 240^{3}}{12} + 2400 \times 20^{2} + 2 \times 2400 \times 30^{2} + 4800 \times 20^{2} = 36.08 \times 10^{6} \text{ mm}^{4}$ $I_{yz} = 2400 \times 30 \times (-106) + 2400 \times 20 \times 36 + 2400 \times 30 \times 36 + 4800 \times 20 \times 54 = 1.87 \times 10^6 \, mm^4$ Les moments d'inertie principaux et centraux et leur orientation :

$$tg2\alpha_0 = \frac{2 \times 1.87}{36.08 - 50.05} \Rightarrow \alpha_0 = -7.5^{\circ}$$
$$I_{1,2} = \frac{50.05 + 36.08}{2} \pm \sqrt{\left(\frac{50.05 - 36.08}{2}\right)^2 + 1.87^2} \Rightarrow \frac{I_1 = 50.30 \times 10^6 \text{ mm}^4}{I_2 = 35.84 \times 10^6 \text{ mm}^4}$$

Source: www.almohandiss.com

186

Solutions 187

On trace le cercle de Mohr:

CORRIGE DE L'EXERCICE 2

L'orientation de contraintes principales:

$$tg2\theta_0 = \frac{2 \times (-40)}{-50 - 10} = 1.33 \Longrightarrow \theta_0 = 26.57^\circ$$

Les contraintes principales:

$$\sigma_{1,2} = \frac{-50 + 10}{2} \pm \sqrt{\left(\frac{-50 - 10}{2}\right)^2 + 40^2} \Rightarrow \frac{\sigma_1 = 30 \,\text{N} \,/\,\text{mm}^2}{\sigma_2 = -70 \,\text{N} \,/\,\text{mm}^2}$$

Orientation des axes principaux sur la facette initiale:

188 RESISTANCE DES MATERIAUX DE BASE

Tracé du cercle de Mohr:

CORRIGE DE L'EXERCICE 3

Calcul des réactions:

$$\sum F \uparrow = 0 \Longrightarrow V_A + V_B = 60 \tag{1}$$

$$\sum F \to= 0 \Longrightarrow H_{A} - H_{B} = 0$$
⁽²⁾

$$\sum M_{/A} = 0 \Rightarrow V_{B}(10\sqrt{2} + 5\sqrt{5}) + 5H_{B} = 60(10\sqrt{2} + 2)$$
(3)

$$\sum M_{/Cd} = 0 \Longrightarrow V_{B}(5\sqrt{2}) - 5H_{B} = 60 \times 2$$
(4)

de (3) et (4)

$$V_{B} = 29.8$$
kN et $H_{B} = 42.7$ kN

et de (1) et (2) on obtient:

 $V_A = 30.2$ kN et $H_A = 42.7$ kN

Diagramme des efforts internes:

Tronçon AD 0 ≤θ≤ 78.2

$$N = -30.2 \cos(19.47 + \theta) - 42.7 \sin(19.47 + \theta)$$

$$N(0) = -42.72 \text{ kN}, N(70.5) = -42.7 \text{ kN}, N(78.2) = -38.3$$

$$T = 30.2 \sin(19.47 + \theta) - 42.7 \cos(19.47 + \theta)$$

$$T(0) = -30.17 \text{ kN}, T(70.5) = 30.2 \text{ kN}, T(78.2) = 35.62, T(\theta) = 0 \Rightarrow \theta = 35.3$$

$$M = 30.2 \times 15 [\cos 19.47 - \cos (19.47 + \theta)] - 42.7 \times 15 [\sin (19.47 + \theta) - \sin 19.47)]$$

$$M(0) = 0, M(70.5) = 0, M(78.2) = 66.18, M_{\text{max}} = M(35.3) = -143.7$$

Tronçon BD $0 \le \theta \le 40.54$

$$N = -29.8 \cos(41.8 + \theta) - 42.7 \sin(41.8 + \theta)$$

$$N(0) = -50.68 \text{ kN}, N(40.54) = -46.3 \text{ kN}$$

$$T = -29.8 \sin(41.8 + \theta) + 42.7 \cos(41.8 + \theta)$$

$$T(0) = 11.97 \text{ kN}, T(40.54) = -23.84 \text{ kN}, T(\theta) = 0 \Rightarrow \theta = 13.3$$

$$M = 29.8 \times 15[\cos41.8 - \cos(41.8 + \theta)] - 42.7 \times 15[\sin(41.8 + \theta) - \sin41.8)]$$

$$M(0) = 0, M(40.54) = 65.81, M_{\text{max}} = M(13.3) = -20.91$$

RESISTANCE DES MATERIAUX DE BASE 190

CORRIGE DU SUJET 2

CORRIGE DE L'EXERCICE 1

géométrie du demi-cercle

$$S_1 = \frac{\pi r^2}{2} Y_1 = \frac{4r}{3\pi} Z_1 = r I_{yz1} = 0$$

géométrie du triangle

$$S_2 = rb Y_2 = \frac{b}{3} Z_2 = \frac{2r}{3} I_{yz2} = -\frac{b^2 (2r)^2}{72}$$

Le moment d'inertie centrifuge de la section entière

$$I_{yz} = \sum I_{yzi} + \sum S_{i}Y_{i}Z_{i}$$

$$I_{yz} = 0 \Rightarrow 0 - \frac{b^{2}(2r)^{2}}{72} + \frac{\pi^{2}}{2} \times \left(-\frac{4r}{3\pi}\right) \times r + rb \times \frac{b}{2} \times \frac{25}{3} = 0$$

$$\Rightarrow \frac{b^{2}(2r)^{2}}{18} - \frac{2r^{4}}{3} + \frac{2b^{2}r^{2}}{9} = 0$$

$$\Rightarrow \frac{b^{2}}{6} - \frac{2r^{2}}{3} = 0 \Rightarrow b = 2r$$
(a)

Moments d'inertie principaux

Pour b = 100 mm et r = 80 mm

$$\begin{split} & S_1 = 10053 \text{ mm}^2, \quad Y_1 = -33.95 \text{ mm}, \quad Z_1 = 80 \text{ mm} \\ & I_{zz1} = 4.5 \times 10^6 \text{ mm}^4, \quad I_{yy1} = 16.08 \times 10^6 \text{ mm}^4 \\ & S_2 = 2000 \text{ mm}^2, \quad Y_2 = -33.33 \text{ mm}, \quad Z_2 = 53.33 \text{ mm} \\ & I_{yz2} = 4.44 \times 10^6 \text{ mm}^4, \quad I_{yy1} = 11.28 \times 10^6 \text{ mm}^4 \end{split}$$

Les coordonnées du centre de gravité

$$Y_G = \frac{\sum S_i Y_i}{\sum S_i} = -4.13 \text{mm}$$
 $Z_G = \frac{\sum S_i Z_i}{\sum S_i} = 68.18 \text{mm}$

Solutions 191

$$I_{y} = \sum I_{yi} + \sum S_{i}(Z_{G} - Z_{i})^{2}$$

$$\Rightarrow I_{y} = (16.08 + 11.38) \times 10^{6} + 10053 \times (-11.82)^{2} + 2000 \times (14.85)^{2} = 29.3 \times 10^{6} \text{ mm}^{4}$$

$$I_{z} = \sum I_{zi} + \sum S_{i}(Y_{G} - Y_{i})^{2}$$

$$\Rightarrow I_{z} = (4.5 + 4.44) \times 10^{6} + 10053 \times (29.82)^{2} + 2000 \times (-37.42)^{2} = 20.68 \times 10^{6} \text{ mm}^{4}$$

$$I_{yz} = \sum I_{yzi} + \sum S_{i}(Y_{G} - Y_{i})(Z_{G} - Z_{i})$$

$$\Rightarrow I_{yz} = -\frac{100^{2} \times 160^{2}}{72} + 10053 \times (29.82)(-11.82) + 2000 \times (-37.42)(14.85) = -8.21 \times 10^{6} \text{ mm}^{4}$$

Moments d'inertie principaux et leur orientation

Figure 2

CORRIGE DE L'EXERCICE 2

192 RESISTANCE DES MATERIAUX DE BASE

Détermination des réactions :

$$\sum M_{/Bgauche} = 0 \Rightarrow 12\sqrt{2} \times \frac{2\sqrt{2}}{3} + 2H_A - 2V_A = 0$$

$$\Rightarrow 8 + H_A - V_A = 0$$

$$\sum M_{/D} = 0 \Rightarrow 6V_A + 2H_A - 12\sqrt{2} \times \frac{2\sqrt{2}}{3} - 2 \times 20 - 15 - 2 \times 8 \times 4 = 0$$

$$\Rightarrow 6V_A + 2H_A = 135$$

De (1) et (2)
$$\Rightarrow V_A = 18.88 \text{ kN et } H_A = 10.88 \text{ kN}$$

$$\sum F \uparrow = 0 \Rightarrow V_A + V_D = 20 + 12\sqrt{2} \frac{\sqrt{2}}{2}$$

$$\Rightarrow V_D = 13.12 \text{ kN}$$

$$\sum F \rightarrow = 0 \Rightarrow H_A + H_D = -12\sqrt{2} \frac{\sqrt{2}}{2} + 8 \times 4$$

$$\Rightarrow H_D = 9.12 \text{ kN}$$

Diagrammes des efforts internes:

Tronçon AB:
$$0 \le x \le 2\sqrt{2}$$

 $N + 10.88 \times \frac{\sqrt{2}}{2} + 18.88 \times \frac{\sqrt{2}}{2} = 0 \Rightarrow N = -21kN$
 $T + 10.88 \times \frac{\sqrt{2}}{2} - 18.88 \times \frac{\sqrt{2}}{2} + \frac{12x}{2\sqrt{2}} \times \frac{x}{2} = 0 \Rightarrow T = 5.66 - 2.12x^2kN$
 $M + 10.88 \frac{\sqrt{2}}{2}x - 18.88 \frac{\sqrt{2}}{2}x + \frac{2.12}{3}x^3 = 0 \Rightarrow M = 5.65x - 0.71x^3$
 $T(x) = 0 \Rightarrow x = 1.62 \Rightarrow M = 5.65x - 0.71x^3$

 $T(x) = 0 \Rightarrow x = 1.63 \text{ m} \Rightarrow \text{Mmax} = \text{M} (1.63) = 6.13 \text{ kN.m}$

Tronçon BE: $0 \le x \le 2$

N+10.88+12
$$\sqrt{2} \times \frac{\sqrt{2}}{2} = 0 \Rightarrow$$
 N = -22.88kN
T-18.88+ $\frac{\sqrt{2}}{2} \times 12\sqrt{2} = 0 \Rightarrow$ T = 6.88kN
M-18.88 $\frac{\sqrt{2}}{2}(2+x) + 10.88 \times 2 + 12\sqrt{2}(\frac{2\sqrt{2}}{3} + \frac{\sqrt{2}}{2}x) = 0 \Rightarrow$ M = 6.88x

Tronçon CE: $0 \le x \le 2$ $N-9.12+8\times4=0 \Longrightarrow N=-22.88kN$ $T + 13.12 = 0 \Longrightarrow T = -13.12 \text{kN}$ $M - 13.12x - 4 \times 9.12 + 8 \times 4 \times 2 = 0 \Longrightarrow M = 13.12x - 27.50$ Tronçon DC: $0 \le x \le 4$ $N + 13.12 = 0 \Longrightarrow N = -13.12kN$ $T + 9.12 - 8x = 0 \Longrightarrow T = 8x - 9.12kN$ $M-9.12x+8\times\frac{x^2}{2}=0 \Longrightarrow M=9.12x-4x^2$ 6.88 22.88 \oplus 5.66 22.88 11.3 13.12 Т 2 Ν 9.12 13.12 27.5 1.37 27.5 13.7 Μ 5.2

CORRIGE DE L'EXERCICE 1

a) Détermination des contraintes:

$$\sigma_{\rm x} = \frac{{\rm E}(\varepsilon_{\rm x} + v\varepsilon_{\rm y})}{1 - v^2} = \frac{2.07 \times 10^5 (220 + 0.3 \times 160) 10^{-6}}{1 - .09} = 60.96 \,{\rm N} \,{\rm / \,mm^2}$$
$$\sigma_{\rm y} = \frac{{\rm E}(\varepsilon_{\rm y} + v\varepsilon_{\rm x})}{1 - v^2} = \frac{2.07 \times 10^5 (160 + 0.3 \times 220) 10^{-6}}{1 - .09} = 51.41 \,{\rm N} \,{\rm / \,mm^2}$$

b) Calcul de la déformation sur la jauge B:

$$\varepsilon_{\rm B} = \frac{\varepsilon_{\rm x} + \varepsilon_{\rm y}}{2} = \frac{220 + 160}{2} \times 10^{-6} = 190 \times 10^{-6}$$

194 RESISTANCE DES MATERIAUX DE BASE

c) Détermination de la contrainte tangentielle maximale:

Les contraintes normales étant uniformes, donc elle sont des contraintes principales et $\tau_{XY} = 0$ dans ce cas. La contrainte tangentielle maximale s'écrit alors:

$$\tau_{\rm max} = \frac{\sigma_1 - \sigma_2}{2} = \frac{60.96 - 51.41}{2} = 4.78 \, \text{N} \, / \, \text{mm}^2$$

d) Détermination de la variation du volume:

$$\frac{\Delta V}{V} = \varepsilon_x + \varepsilon_y + \varepsilon_z$$

avec

$$\varepsilon_z = \frac{\nu(\sigma_x + \sigma_y)}{E} = \frac{0.3(60.96 + 51.41)}{2.07 \times 10^5} = 162.9 \times 10^{-6}$$

d'où

$$\Delta V = (\varepsilon_x + \varepsilon_y + \varepsilon_z)V = (220 + 160 + 162.9) \times 10^{-6} \times 1 \times 1.5 \times 0.2 = 1.63 \times 10^{-4} \text{ m}^3$$

CORRIGE DU SUJET 3

CORRIGE DE L'EXERCICE 1

La condition des allongements égaux s'écrit:

$$\Delta L_{a} = \Delta L_{c}$$

$$\frac{N_{a}L_{a}}{E_{a}S_{a}} = \frac{N_{c}L_{c}}{E_{c}S_{c}}$$
avec N_a = N_c = P

et S_a = $\frac{\pi d_{a}}{4}$ S_c = $\frac{\pi d_{c}}{4}$

$$\Rightarrow d_{c} = d_{a}\sqrt{\frac{E_{a}L_{c}}{E_{c}L_{a}}} = 30\sqrt{\frac{2 \times 0.4}{1.1 \times 0.2}} = 57.2 \text{mm}$$

$$\sigma_{a} = \frac{N}{S_{a}} = \frac{4 \times 20 \times 10^{3}}{\pi \times 30^{2}} = 28.3 \text{N/mm}^{2}$$

$$\sigma_{c} = \frac{N}{S_{c}} = \frac{4 \times 20 \times 10^{3}}{\pi \times 57.2^{2}} = 7.78 \text{N/mm}^{2}$$
Cuivre

196 RESISTANCE DES MATERIAUX DE BASE

CORRIGE DE L'EXERCICE 2

Pour éviter le glissement entre les planches, il faut que la contrainte tangentielle au niveau des facettes collées soit inférieure à la contrainte admissible de cisaillement (glissement).

$$\tau_{100} \le [\tau]_g = 2 \text{ N/mm}^2$$
$$\tau = \frac{\text{TS}^*}{\text{Ib}} \le 2$$

avec $S^* = 400 \times 200 \times 200$

la contrainte normale maximale dans ce cas:

 $\sigma_{\rm max} = \frac{M_{\rm max}Y}{I} = \frac{360 \times 10^3 \times 2000 \times 300 \times 12}{400 \times 600^3} = 30 \, \text{N} \, / \, \text{mm}^2$

CORRIGE DE L'EXERCICE 3

Le système étant hyperstatique, donc en plus de l'équation d'équilibre on établit aussi l'équation de la compatibilité géométrique et la condition supplémentaire de l'utilisation rationnelle du matériau nous permet d'écrire une équation pour déterminer l'inconnue géométrique L_{AC} .

L'Equation d'équilibre:

 $M = M_A + M_B \tag{1}$

L'équation de compatibilité géométrique:

 $\phi_{AB} = \phi_{AC} + \phi_{CB} = 0$

Condition d'égales contraintes

 $\tau_{AC} = \tau_{CB} = [\tau]$

Solutions 197

$$de (2) \Rightarrow \frac{M_A L_A}{GI_A} - \frac{M_B L_B}{GI_B} = 0$$
$$de (3) \Rightarrow \frac{M_A d_A / 2}{I_A} = \frac{M_B d_B}{I_B} = 0$$

avec

 I_A et I_B : moments polaires des tronçons AC et CB respectivement

 d_A et d_B : diamètres des tronçons AC et CB respectivement

G: module d'élasticité transversal

En divisant (4) / (5), on obtient:

$$\frac{L_A}{GI_A} \times \frac{I_A}{d_A} = \frac{L_B}{GI_B} \times \frac{I_B}{d_B}$$

$$\Rightarrow L_A = L_B \times \frac{d_A}{d_B} \quad \text{avec} \quad L_B = L - L_A$$

$$L_A = (L - L_A) \frac{d_A}{d_B} \Rightarrow L_A (1 + \frac{d_A}{d_B}) = L \frac{d_A}{d_B}$$

d'où

$$L_A = AC = L(\frac{d_A}{d_A + d_B})$$

CORRIGE DE L'EXERCICE 4

Pour éviter toute contrainte de traction on doit vérifier que:

$$\sigma_{\max} \le 0$$

 $\sigma_{\max} = \frac{N}{A} + \frac{M \times z}{I}$ (à la base)

avec:

$$N = -\rho g S H$$
 (Poids propre de la cheminée)
 $M = 2/3 H F$

et F = P D H/2 car la surface projetée d'un cylindre est un rectangle de largeur D

$$M = 2/3 H P D (H/2)$$

= 2/3 H (0.03 H) 5 H/2
= 0.05 H³ kN.m

198 RESISTANCE DES MATERIAUX DE BASE

$$I = \frac{\pi (5^4 - 4^4)}{64} = 18.113 \text{m}^4$$

$$Z = 2.5 \text{ m}$$
d'où $\sigma_{\text{max}} = \frac{-2000 \times 10 \times 7.068 \text{H}}{7.068} + \frac{0.05 \text{H}^3 \times 2.5}{18.113} \times 10^3 \le 0$

$$-2000 \times 10 + 6.9 \text{ H}^3 \le 0$$

$$H(6.9 \text{ H}^2 - 2 \times 10^4) \le 0$$

$$\Rightarrow H \le \sqrt{\frac{2 \times 10^4}{6.9}} = 53.84 \text{m}$$

CORRIGE DU SUJET 4

CORRIGE DE L'EXERCICE 1

Pour déterminer la flèche à l'extrimité libre de la poutre on utilise la méthode des paramètres initiaux dont les équations sont les suivantes:

$$EI\theta(x) = EI\theta_0 + qL^2x + q\frac{(x - L/2)^3}{6} - q\frac{(x - L)^3}{6} - \frac{17}{8}qL\frac{(x - L)^2}{2} + qL\frac{(x - 3L/2)^2}{2}$$
$$EIV(x) = EIV_0 + EI\theta_0x + qL^2\frac{x^2}{2} + q\frac{(x - L/2)^3}{24} - q\frac{(x - L)^3}{24} - \frac{17}{8}qL\frac{(x - L)^3}{6} + qL\frac{(x - 3L/2)^3}{6}$$

Les conditions aux limites:

V(2L) = 0

$$V(L) = 0 \ \theta \ EIV_0 + EI\theta_0 L + qL^2 \frac{L^2}{2} + q \frac{(L/2)^3}{24} = 0$$
(1)

$$\theta EIV_0 + 2EI\theta_0 L + qL^2 \frac{(2L)^2}{2} + q \frac{(3L/2)^3}{24} - q \frac{L^3}{24} - \frac{17}{8}qL \frac{L^3}{6} + qL \frac{(L/2)^3}{6} = 0$$
(2)

Les équations (1) et (2) peuvent être ecrites sous la forme:

$$EIV_{0} + EI\theta_{0}L + \frac{193qL^{4}}{384} = 0$$
$$EIV_{0} + 2EI\theta_{0}L + \frac{705qL^{4}}{384} = 0$$

de (3) et (4) on obtient l'expression de V_0 qui est égale à la flèche de l'extremité libre de la poutre:

$$V_0 = f = \frac{319qL^4}{384EI} \le \frac{L}{100} \implies q \le \frac{384EI}{31900L^3}$$

200 RESISTANCE DES MATERIAUX DE BASE

CORRIGE DE L'EXERCICE 2

1- Etude cinématique:

L = 3b - 2a - r

 $= 3 \times 6 - 2 \times 7 - 4 = 0$ Le systeme est isostatique.

2- Détermination des éfforts par la méthode des noeuds:

Noeud D:

$$P + \frac{4}{5}DC + \frac{4}{2\sqrt{13}} = 0$$
$$\frac{3}{2\sqrt{13}}DE + \frac{3}{5}DC = 0$$
$$\Rightarrow DC = -\frac{5}{2}P \text{ et } DE = \frac{\sqrt{13}}{2}P$$

Noeud C:

$$\frac{3}{5}DC - CE = 0$$
$$BC - \frac{4}{5}DC = 0$$
$$\Rightarrow CE = -\frac{3}{2}P \text{ et } BC = -2P$$

Noeud E:

$$CE + \frac{6}{2\sqrt{13}}DE + \frac{3}{5}BE - \frac{3}{5}AE = 0$$

$$\frac{4}{5}AE + \frac{4}{5}BE - \frac{4}{2\sqrt{13}}DE = 0$$

$$\Rightarrow AE = \frac{5}{8}P \text{ et } BE = \frac{5}{8}P$$

$$AE = \frac{5}{8}P \text{ et } BE = \frac{5}{8}P$$

Solutions 201

Les efforts maximaux sont donc:

$$N_{max}^{+} = \frac{\sqrt{13}}{2}P = 1.8P$$
 (barre DE)
 $N_{max}^{-} = -\frac{5}{2}P = -2.5P$ (barre CD la plus élancée L = 5 m)

3- Vérification à la résistance:

$$\left|\sigma_{\max}\right| = \frac{2.5 P_{\max}}{S} \le [\sigma]$$
$$\Rightarrow P_{\max} \le \frac{150 \times 200 \times 160}{2.5} = 1920 \text{kN}$$

4/ Vérification à la stabilité:

$$i_{\min} = \frac{a}{\sqrt{12}} = 43.3$$

$$\lambda = \frac{\mu L}{i_{\min}} = \frac{5000 \times 1}{43.3} = 115.5 \Rightarrow \varphi = 0.48$$

$$[\sigma]_{s} = \varphi[\sigma] = 0.48 \times 160 = 76.8 \text{ N/mm}^{2}$$

$$\Rightarrow P_{\max} \le \frac{150 \times 200 \times 76.8}{2.5} = 921.6 \text{ kN}$$

5/ Section tubulaire:

$$\begin{split} &S_T = S_R \implies \pi/4 \ (D^2 - d^2) = 150 \times 200 \\ \implies pour \ d = 100 \implies D = 219.5 \ mm \\ &I = \pi/64 \ (D^4 - d^4) = 1.09 \times 108 \ mm^4 \\ &i_{min} = 60.29 \ mm \\ &\lambda = 82.92 \ \implies \phi = 0.73 \\ &[\sigma]_s = 0.73 \times 160 = 116.8 \ N/mm^2 \\ &d'ou \ P_{max} \le 30 \ x \ 103 \ x \ 116.8 \ / \ 2.5 = 1401.6 \ kN \end{split}$$

Le rapport de $P_{max(tube)} / P_{max(rectangle)} = 1401.6 / 921.6 = 1.52$

La charge maximal du monte charge ayant des sections tubulaires est une fois et demi celle du monte charge avec des section rectangulaires ayant les même aires.

202 RESISTANCE DES MATERIAUX DE BASE

CORRIGE DE L'EXERCICE 3

On établit les équations des trois moments pour:

$$i = 2$$

$$2M_{2}(KL + 2L) + 2M_{3}L = -6EI(\theta_{2}^{g} + \theta_{2}^{d}) \quad (1)$$

$$i = 3$$

$$2LM_{2} + 2M_{3}(2L + L) = -6EI(\theta_{3}^{g} + \theta_{3}^{d}) \quad (2)$$
On a:

$$\theta_{2}^{g} = \theta_{3}^{d} = 0$$

$$2$$

On détermine alors θ_2^d *et* θ_3^g de la travée ci-contre:

$$\Sigma M_{/3} = 0 \implies R_2^0 = \frac{5qL}{6}$$
$$\Sigma M_{/2} = 0 \implies R_3^0 = \frac{-qL}{3}$$

On utilise la méthode des parametres initiaux pour déterminer les rotations aux appuis, les équations sont les suivantes:

$$EI\theta(x) = EI\theta_0 - \frac{5qL}{6}\frac{x^2}{2} + \frac{q}{L}\frac{x^4}{24} - \frac{q(x-L)^3}{6} - \frac{q}{L}\frac{(x-L)^4}{24} + qL^2(x-L)$$

 $EIV(x) = EIV_0 + EI\theta_0 x - \frac{5qL}{6}\frac{x^3}{6} + \frac{q}{L}\frac{x^5}{5!} - \frac{q(x-L)^4}{4!} - \frac{q}{L}\frac{(x-L)^5}{5!} + q\frac{L^2}{2}(x-L)^2$ Les conditions aux limites:

Les conditions aux limites.

$$EIV(0) = 0 \implies V_0 = 0$$
$$EIV(2L) = 0 \implies EI\theta_0 = \frac{5qL^3}{2} - \frac{2qL^3}{2} + \frac{qL^3}{2} + \frac{qL^3}{2$$

$$EIV(2L) = 0 \implies EI\theta_0 = \frac{5qL^3}{9} - \frac{2qL^3}{15} + \frac{qL^3}{48} + \frac{qL^3}{48 \times 5} - \frac{qL^3}{4}$$

d'où on tire $\theta_0 = \theta_2^d = \frac{7 \, \text{lq} \text{L}^3}{360 \text{EI}}$

et
$$EI\theta(2L) = EI\theta_3^g \Rightarrow \theta_3^g = \frac{qL^3}{90EI}$$

En substituant ces valeurs dans les équations (1) et (2), on aboutit au système d'équations suivant:

Solutions 203

2L (K+2)
$$M_2$$
 + 2L M_3 = - (71/36) qL³
2L M_2 + 8L M_3 = -(1/15) qL³
ainsi on obtient:

$$M_2 = \frac{-1.74}{3K+2}qL^2$$
 et $M_3 = -\frac{(3K-50.2)}{90(3K+2)}$

 $T(x) = 1.4 qL - qx^2 / 2L$

L'appui 2 est considéré comme encastrement pour $K \rightarrow 0$, on remplace donc K = 0 dans les expressions (5) et on trace les diagrammes des efforts internes:

$$M_{2} = -0.87 \text{ qL}^{2}$$

$$M_{3} = 0.28 \text{ qL}^{2}$$

$$R_{2} = R_{2}^{0} + \frac{M_{3} - M_{2}}{2L} = 1.4 \text{ qL}$$

$$R_{3} = R_{3}^{0} + \frac{M_{2} - M_{3}}{2L} - \frac{M_{3}}{L} = -1.19 \text{ qL}$$

$$R_{4} = \frac{M_{3}}{L} = 0.28 \text{ qL}$$

$$0 < x < L$$

$$M(x) = -0.87 \text{ qL}^{2} + 1.4 \text{ qLx} - \text{ qx}^{3} / 6L$$

$$M_{+}$$

L'appui 2 est considéré comme appui double de rive quand K $\rightarrow \infty$, et dans ce cas on a:

204 RESISTANCE DES MATERIAUX DE BASE

CORRIGE DU SUJET 5

CORRIGE DE L'EXERCICE 1

On considère que la section totale et composée d'une section S_1 carrée de 180 cm de coté evidé de la section triangulaire S_2 de hauteur h = 120 cm et de base b = 120 cm.

Le centre de gravité:

$$Y_{G} = \sum_{S_{1}}^{Y_{1}S_{1}} = \frac{90(180)^{2} - 140(120)^{2}/2}{(180)^{2} - (120)^{2}/2} = \sum_{T_{2}}^{T_{2}} \sum_{S_{1}}^{T_{2}} = \frac{90(180)^{2} - 140(120)^{2}/2}{(180)^{2} - (120)^{2}/2} = \sum_{T_{2}}^{T_{2}} \sum_{S_{1}}^{T_{2}} \sum_{T_{2}}^{T_{2}} \sum$$

Moments d'inertie principaux et leur orientation:

$$tg2\alpha_{0} = \frac{2I_{zy}}{I_{y} - I_{z}} = \frac{2I_{zy}}{0} = \infty \Longrightarrow 2\alpha_{0} = \frac{\pi}{2} \Longrightarrow \alpha_{0} = \frac{\pi}{4}$$
$$I_{1,2} = \frac{I_{y} + I_{z}}{2} \pm \sqrt{\frac{(I_{y} - I_{z})^{2}}{4} + I_{yz}^{2}}$$
$$I_{1} = 32724 \times 10^{4} \text{ cm}^{4}$$
$$I_{2} = 7884 \times 10^{4} \text{ cm}^{4}$$

CORRIGE DE L'EXERCICE 2

- Calcul des réactions:

$$\Sigma M_{Bg} = 0 \Rightarrow 3H_A - 15 \times 1.5 = 0$$

 $\Rightarrow H_A = 7.5 \text{ KN}$

$$\Sigma F_{/H} = 0 \implies 15 \text{ x } 1.5 \text{ - H}_{A} \text{ -H}_{E} = 0$$

 $\implies H_{E} = 7.5 \text{ kN}$

 $\Sigma M_{/A} = 3 \times 7.5 + 7.464 V_E - 24 \times 4.464 - 20 \times 1.73 - 15 \times 1.5=0$ $\Rightarrow V_E = 22.20 \text{ kN}$

 $\Sigma M_{B} = 7.46 V_{A} + 7.5 \times 3 - 15 \times 1.5 - 20 \times 5.73 - 24 \times 2 = 0$ $\Rightarrow V_{A} = 21.80 \text{ kN}$

206 RESISTANCE DES MATERIAUX DE BASE

-Diagrammes des efforts N , T et M : Tronçon AB : $0 \le x \le 3$ N=-21.8 KN T=7.5 - 5x, T(0) = 7.5, T(3) = -7.5, T(x) = 0 \Rightarrow x = 1.5 m M = 7.5x -5x²/2, M(0) = 0, M(3) = 0, M(1.5) = 5.625 KN.m

Tronçon BC $0 \le \theta \le 60$

 $N + 21.8 \cos(30 + \theta) - 7.5 \sin(30 + \theta) + 15\sin(\theta + 30) = 0$ $N(\theta) = -21.8 \cos(30 + \theta) - 7.5 \sin(30 + \theta), N(0) = -22.6 \text{ kN}, N(60) = -7.5 \text{ kN}$ $T - 21.8 \sin(30 + \theta) - 7.5 \cos(30 + \theta) + 15\cos(30 + \theta) = 0$ $T(\theta) = 21.8 \sin(30 + \theta) - 7.5 \cos(30 + \theta), T(0) = 4.4 \text{ kN}, T(60) = 21.8 \text{ kN}$ $M - 21.8 x 2[\cos 30 - \cos(30 + \theta)] - 7.5[3 + 2(\sin(30 + \theta) - \sin 30)] + 15[1.5 + 2(\sin(30 + \theta) - \sin 30)]$

 $M(\theta) = 21.8 \text{ x } 2[\cos 3\theta - \cos(3\theta + \theta)] - 7.5 \text{ x } 2[\sin(3\theta + \theta) - \sin 3\theta]$ $M(\theta) = 0, M(\theta) = 30.2 \text{ KN.m}$

Tronçon ED: $0 \le x \le 4$

N = -7.5 KN

 $T(x) = -22.2 + 6x, T(0) = -22.2, T(4) = 1.8, T(x) = 0 \implies x = 3.7 \text{ m}$ $M(x) = 22.2x - \frac{6x^2}{2}, M(0) = 0, M(4) = 40.8 \text{kN.m}, M_{\text{max}} = M(3.7) = 41.07 \text{ KN.m}$

Tronçon DC: $0 \le \theta \le 60$ N + 22.2 cos(30 + θ) + 7.5sin(30 + θ) - 24 cos(30 + θ) = 0 N(θ) = 1.8 cos(30 + θ) -7.5sin(30 + θ), N(0) = -2.19, N(60) = -7.5

Solutions 207

$$T + 22.2 \sin(30 + \theta) - 24 \sin(30 + \theta) - 7.5 \cos(30 + \theta) = 0$$

$$T(\theta) = 7.5 \cos(30 + \theta) - 1.8 \sin(30 + \theta), T(0) = 7.4, T(60) = 1.8 \text{ KN}$$

$$M + 24 \times 2[\cos(30 + \theta) - \cos 30] - 22.2[4 + 2(\cos 30 - \cos(30 + \theta)]$$

$$+ 7.5 \times 2[\sin(30 + \theta) - \sin 30]$$

$$M(\theta) = 40.8 - 1.8 \times 2[\cos 30 - \cos(30 + \theta)] - 7.5 \times 2[\sin(30 + \theta) - \sin 30]$$

$$M(0) = 40.8 \text{ kN.m. } M(60) = 30.2 \text{ KN.m}$$

Pour le tracé des diagrammes, on calcul M, N, et T aux niveaux des section intermédiaires dans le tronçon en arc.

CORRIGE DE L'EXERCICE 3

 σ_x et σ_y étant connues, on peut donc déterminer les déformations suivant x et y:

$$\varepsilon_{x} = \frac{\sigma_{x}}{E} - \nu \frac{\sigma_{y}}{E}$$
(1)
$$\varepsilon_{y} = \frac{\sigma_{y}}{E} - \nu \frac{\sigma_{x}}{E}$$
(2)

208 RESISTANCE DES MATERIAUX DE BASE

Pour déterminer complètement un état de contrainte plan il suffit de connaître les déformations suivant trois orientations. ε_x et ε_y sont obtenues de (1) et (2), on peut donc déterminer les contraintes tangentielles d'une manière très simple en plaçant la jauge à 45° par rapport à l'axe x, on aura ainsi la rosette à 45°:

 $\gamma_{XY} = 2 \varepsilon_{45} - \varepsilon_X - \varepsilon_Y$ d'où $\tau_{XY} = G\gamma_{XY}$ avec G = E / 2(1 + v) $\tau_{xy} = G(2\varepsilon_{45} - \varepsilon_x - \varepsilon_y) = \frac{E}{2(1 + v)} [2\varepsilon_{45} - \varepsilon_x - \varepsilon_y]$ $= \frac{E}{2(1 + v)} \left[2\varepsilon_{45} - \frac{\sigma_x}{E} - \frac{\sigma_y}{E} + \frac{v}{E} (\sigma_y + \sigma_x) \right]$ $= \frac{E}{2(1 + v)} \left[2\varepsilon_{45} + \frac{1}{E} (\sigma_x + \sigma_y) (v - 1) \right]$

d'où:

$$\tau_{xy} = \frac{1}{2(1+\nu)} \Big[2E\varepsilon_{45} + (\nu-1)(\sigma_x + \sigma_y) \Big]$$
CORRIGE DU SUJET 6

CORRIGE DE L'EXERCICE 1

Le moment appliqué est repris par l'acier et le cuivre en même temps. L'équation de la statique à une section quelconque peut donc s'écrire:

$$M_a + M_c = M$$

Ma: le moment repris par l'acier

M_c: le moment repris par le cuivre

L'acier et le cuivre étant solidaires, la condition de compatibilité est donnée par:

$$\varphi_{a} = \varphi_{c} \Longrightarrow \frac{M_{a}L}{G_{a}I_{a}} = \frac{M_{c}L}{G_{c}I_{c}}$$

avec $G = \frac{E}{2(1+\nu)}$

De (1) et (2) on tire alors:

$$M_{a} = \frac{E_{a}I_{a}}{E_{a}I_{a} + E_{c}I_{c}} M$$
$$M_{c} = \frac{E_{c}I_{c}}{E_{a}I_{a} + E_{c}I_{c}} M$$

Application numérique:

$$I_{a} = \frac{\pi (D^{4} - d^{4})}{32} = \frac{\pi (120^{4} - 100^{4})}{32} = 10.54 \times 10^{6} \, \text{mm}^{4}$$

$$I_c = \frac{\pi d^4}{32} = \frac{\pi x 100^4}{32} = 9.82 \times 10^6 \text{ mm}^4$$

RESISTANCE DES MATERIAUX DE BASE 210

$$M_{c} = \frac{0.7 \times 10^{5} \times 9.82 \times 10^{6}}{(2.1 \times 10.54 + 0.7 \times 9.82) \times 10^{5} \times 10^{6}} M = 0.237 M$$

 $M_c = 2.37 \text{kN.m}$

$$M_a = (1 - 0.237)M = 7.63$$
kN.m

Les contraintes tangentielles

$$\tau_{\rm c} = \frac{7.63 \times 10^6 \times 60}{10.54 \times 10^6} = 43.52 \,\text{N} \,/\,\text{mm}^2 < [\tau]_{\rm a}$$
$$\tau_{\rm a} = \frac{2.37 \times 10^6 \times 50}{9.82 \times 10^6} = 12.1 \,\text{N} \,/\,\text{mm}^2 < [\tau]_{\rm c}$$
$$\varphi = \frac{7.63 \times 10^6 \times 2000}{1 \times 10^5 \times 10.54 \times 10^6} = 1.44 \times 10^{-2} \,\text{rd} = 0.73^{\circ}$$

CORRIGE DE L'EXERCICE 2

L'allongement sous l'effet de la température:

$$(\Delta L_1 + \Delta L_2)_T = \alpha L_1 \Delta T + \alpha L_2 \Delta T = (L_1 + L_2) \alpha \Delta T$$

Le raccourcissement sous l'effet de l'effort normal est:

$$(\Delta L_1 + \Delta L_2)_N = \frac{NL_1}{ES_1} + \frac{NL_2}{ES_2} = \frac{N}{E}(\frac{L_1}{S_1} + \frac{L_2}{S_2})$$

La poutre étant bi-encastrée, la condition de compatibilité géométrique s'écrit alors:

$$(L_1+L_2)\alpha\Delta T = \frac{N}{E}(\frac{L_1}{S_1} + \frac{L_2}{S_2})$$

L'expression de l'effort normal N devient alors:

$$N = \frac{(L_1 + L_2)E\alpha\Delta T}{\frac{L_1}{S_1} + \frac{L_2}{S_2}}$$

CORRIGE DE L'EXERCICE 3

1/ Pour éviter toute contraintes de compression au niveau de l'encastrement on doit avoir:

$$\sigma_{\min} \ge 0$$

$$\sigma_{\min} = \frac{N}{A} \cdot \left| \frac{M_y}{W_y} \right| \cdot \left| \frac{M_z}{W_z} \right|$$

avec:

 $N = P \cos \alpha$ $M_{y} = |PL \cos \alpha - Pesin \alpha|$ $M_{z} = 0$ Si $PL \cos \alpha > Pesin \alpha \Rightarrow M_{y} = PL \cos \alpha - Pesin \alpha$

Si
$$PL\cos\alpha < PeL\sin\alpha \Rightarrow M_y = -PLe\cos\alpha + Pe\sin\alpha$$

Pour le premier cas on a:

$$\frac{\frac{\text{Psin}\,\alpha}{\text{A}} - \frac{\text{PLcos}\,\alpha - \text{Pesin}\,\alpha}{\text{W}} \ge 0$$
$$(\frac{1}{\text{A}} + \frac{\text{e}}{\text{W}}) \sin \alpha - \frac{\text{L}}{\text{W}} \cos \ge 0$$
$$\Rightarrow \text{tg}\,\alpha \le \frac{\text{L}}{\text{W}} (\frac{1}{\text{A}} + \frac{\text{e}}{\text{W}})$$

de la même manière, pour le deuxième cas on obtient:

$$\operatorname{tg} \alpha \leq \frac{\mathrm{L}}{\mathrm{W}} \left(-\frac{1}{\mathrm{A}} + \frac{\mathrm{e}}{\mathrm{W}} \right)$$

Application numérique:

W =
$$\frac{a^3}{6}$$
 = 10.67x10⁶ mm³
tg $\alpha_1 = \frac{\frac{1000}{10.67x10^6}}{\frac{1}{16x10^4} + \frac{180}{10.67x10^6}}$ = 4.05 $\Rightarrow \alpha_1 = 76.14^\circ$

$$\sigma_{\max} = \frac{10x10^6 \sin 76.14}{16x10^4} + 10x10^6 \left[\frac{1000 \cos 76.14 - 180 \sin 76.14}{10.67x10^6} \right] = 121.6 \text{ N/mm}^2$$
$$\text{tg}\alpha_2 = \frac{\frac{1000}{10.67x10^6}}{-\frac{1}{16x10^4} + \frac{180}{10.67x10^6}} = 8.25 \Rightarrow \alpha_2 = 83.5^\circ$$

212 RESISTANCE DES MATERIAUX DE BASE

$$\sigma_{\max} = \frac{10x10^6 \sin 83.5}{16x10^4} + 10x10^6 \left[\frac{-1000 \cos 83.5 + 180 \sin 83.5}{10.67x10^6}\right] = 122.6 \text{ N/mm}^2$$

2/ Pour des contraintes uniformes au niveau de l'encastrement on doit vérifier:

$$\sigma_{\min} = \sigma_{\max}$$

$$\frac{P\sin\alpha}{A} + \left[\frac{-Pe\sin\alpha + PL\cos\alpha}{W}\right] = \frac{P\sin\alpha}{A} - \left[\frac{-Pe\sin\alpha + PL\cos\alpha}{W}\right]$$

$$2e\sin\alpha = 2L\cos\alpha \Rightarrow tg\alpha = \frac{L}{e} \Rightarrow \alpha = 79.8^{\circ}$$

Dans ce cas

$$\sigma_{\max} = \sigma_{\min} = \frac{P \sin \alpha}{A} = \frac{10 \times 10^6 \sin 79.8}{16 \times 10^4} = 61.5 \text{ N/mm}^2$$

CORRIGE DE L'EXERCICE 4

Pour une console uniformément chargée on a:

$$T_{max} = qL$$

$$M_{max} = \frac{qL^2}{2}$$

$$\sigma_{max} = \frac{My}{I} = \frac{3qL^2}{bh^2} \le [\sigma] \Rightarrow q_{flexion} \le \frac{[\sigma]bh^2}{3L^2}$$

$$\tau_{max} = \frac{TS^*}{Ib} = \frac{3T}{2bh} = \frac{3qL}{2bh} \le [\tau] \Rightarrow q_{cisaillement} \le \frac{2[\tau]bh}{3L}$$

La condition de résistance au cisaillement est prépondérante quand la contrainte de cisaillement maximale atteint sa contrainte admissible [τ] avant que la contrainte normale maximale n'arrive au seuil [σ] (q_{cisaillement} < q_{flexion}). En terme d'équations ceci peut s'écrire sous la forme:

$$\frac{2[\tau]bh}{3L} < \frac{[\sigma]bh^2}{3L^2}$$
$$\Rightarrow L < \frac{h}{2} \frac{[\sigma]}{[\tau]} \Rightarrow L_0 = \frac{h}{2} \frac{[\sigma]}{[\tau]}$$

La console est elastiquement instable sous l'effet d'une force P si:

$$P > P_{cr}$$

$$P > \frac{\pi^2 EI_{min}}{L_{eff}^2} \Longrightarrow L_{eff} > \sqrt{\frac{\pi^2 EI_{min}}{P}}$$

CORRIGE DU SUJET 7

CORRIGE DE L'EXERCICE 1

Etude cinématique:

L=3b-3r-2a-r
=
$$3(16) - 3(0) - 2(22) - 4 = 0$$
 le systeme est isostatique

On utilise la méthode graphique de Crémona déterminer les efforts.

Il faut donc déterminer les réactions aux appuis en utilisant les équations de la statique:

$$\sum M_{/A} = 0 \Rightarrow 20x6 + 4.8x10 - 2.4V_{B} = 0$$

$$\Rightarrow V_{B} = 70kN$$

$$\sum M_{/B} = 0 \Rightarrow 20x3.6 + 2.4x10 - 2.4V_{B} = 0$$

$$\Rightarrow V_{A} = 40kN$$

Une seule barre est liée à l'appui A, donc la réaction est dirigée suivant cette barre, la composante horizontale est déterminée donc par:

$$tg45 = \frac{V_A}{H_A} \Rightarrow H_A = 40kN$$
$$\sum F_H = 0 \Rightarrow H_A - H_B = 0 \Rightarrow H_B = 40kN$$

On trace le diagramme des forces et on obtient les efforts dans les barres:

Diagramme des efforts

Figure 1

barre	1-5	1-8	1-10	1-12	1-13	2-13	3-11	3-9
effort	+57.	+96.	+78.	+36.	+32.	-25.	-78.	-125.
barre	3-7	5-7	7-8	8-9	9-10	10-11	11-12	12-13
effort	-110.0	+56.6	-95.0	-30.	+36.	-30.	-36.	-40.

La barre la plus sollicitée est 3-9 avec une compression de 125 kN.

-Si l'appui A est simple:

L = 3(16) - 2(22) - 3 = 1

le système devient un mécanisme (déformable), et les efforts ne peuvent pas être déterminés par les méthodes des systèmes statiques.

CORRIGE DE EXERCICE 2

La poutre est une fois hyperstatique. On établit donc l'équation de la compatibilité géométrique au point A. Pour cela on utilise la méthode des paramètres initiaux pour déterminer l'équation de la déformée.

$$EI\theta(x) = EI\theta_0 + \frac{4x^2}{2} - \frac{R(x-1)^2}{2} + \frac{2(x-1)^3}{6} - \frac{2(x-2)^3}{6}$$
$$EIV(x) = EIV_0 + EI\theta_0 x + \frac{4x^3}{6} - \frac{R(x-1)^3}{6} + \frac{2(x-1)^4}{24} - \frac{2(x-2)^4}{24}$$

Les conditions aux limites (A est un appui fixe) s'écrivent:

$$EI\theta(3) = 0 \Longrightarrow EI\theta_0 + \frac{4(3)^2}{2} - \frac{R(2)^2}{2} + \frac{2(2)^3}{6} - \frac{2(1)^3}{6} = 0 \quad (1)$$

$$EIV(3) = 0 \Longrightarrow EIV_0 + 3EI\theta_0 + \frac{4(3)^3}{6} - \frac{R(2)^3}{6} + \frac{2(2)^4}{24} - \frac{2(1)^4}{24} = 0 \quad (2)$$

$$EIV(1) = 0 \Longrightarrow EIV_0 + EI\theta_0 + \frac{4(1)^3}{6} = 0 \quad (3)$$

2

Le système d'équations s'écrit alors:

$$EI\theta_0 - 2R = -20.33 (5)$$

$$EIV_0 + 3EI\theta_0 - 1.33R = -19.25 (6)$$

$$EIV_0 + EI\theta_0 = -0.67 (7)$$

d'où

R = 8.25 kN

en utilisant les équations de la statique on obtient alors:

$$V_B = -2.25 \text{ kN}$$

 $M_B = 1.5 \text{ kN.m}$

On trace les diagrammes de l'effort tranchant et du moment fléchissant en utilisant la méthode directe:

T(0) = -4kN, T(1) = 8.25-4 = 4.25, T(2) = 4.25 - 2 = 2.25 kN, et $T(3) = -R_B = 2.25 kN$

M(0) = 0, M(1) = -4, $M(2) = -4x^2 + 8.25x^2 - 2(1)/2 = -0.75$, $M(3) = M_B = 1.5 \text{ kN.m}$

On relie les points par des segments de droites ou des paraboles suivant la nature des charges appliquées dans chaque tronçon. On obtient ainsi les diagrammes suivants:

b) Pour un appui élastique la réaction au point A devient

$$R = Kf$$

f est le tassement de l'appui A

En substituant l'expression de R dans les équations de la déformée, les conditions aux limites s'écrivent alors:

 $EI\theta_0 - 2Kf = -20.33 (8)$ $EIV_0 + 3EI\theta_0 - 1.33Kf = -19.25 (9)$ $EIV_0 + EI\theta_0 = -0.67 + EIf (10)$

La résolution du système d'équation donne l'expression du tassement

$$f = \frac{22.02}{2.67K + EI}$$

216 RESISTANCE DES MATERIAUX DE BASE

Pour K = 2.4×10^3 kN/m et EI = 8.86×10^3 kNm² f = 1.44 mm Les réactions dans ce cas deviennent:

 $R = 2.4x10^{3}x1.44x10^{-3} = 3.456 \text{ kN}$ $R_{B} = 6 - 3.456 = 2.544 \text{ kN}$ $M_{B} = 8.1 \text{ kN.m}$

La suppression de l'appui A équivaut à K = 0 et donc:

f = 2.72 mmR = 0 R_B = 6 - 0 = 6 kN M_B = 15 kN.m

CORRIGE DU SUJET 8

CORRIGE DE L'EXERCICE 1

Tenant compte de la symétrie de la poutre les réactions aux appuis sont:

$$R_A = R_B = qL/2$$

Le moment à une distance x de A:

$$M_{A} = \frac{qL}{2}x - q\frac{x^{2}}{2}$$

A

q

Les équations différentielles de la déformée s'écrivent alors:

$$EIV = -q\frac{L}{2}x + \frac{q}{2}x^{2}$$
$$EIV = -q\frac{L}{4}x^{2} + \frac{q}{6}x^{3} + C$$
$$EIV = -q\frac{L}{12}x^{3} + \frac{q}{24}x^{4} + Cx + D$$

Les conditions aux appuis:

$$V(0) = 0 \implies D = 0$$
$$V(L) = 0 \implies C = qL^3 / 24 EI$$

La flèche maximale est à mi-travée:

$$V_{max} = V\left(\frac{L}{2}\right) = \frac{5qL^4}{384EI}$$

La contrainte maximale est provoquée par le moment maximal à mi-travée $M_{max} = qL^2/8$

$$\sigma_{\max} = \frac{M_{\max}y}{I} \le [\sigma] \quad \text{avec} \quad y = d/2$$

RESISTANCE DE MATERIAUX DE BASE

A la limite de la contrainte admissible on a: $\frac{8L^2d}{16I} = [\sigma]$

$$\Rightarrow \frac{q}{I} = \frac{125 \times 10^6 \times 16}{L^2 d}$$

En substituant l'expression de I/q dans l'équation de la flèche maximale, on obtient:

$$V_{max} = 141 \times 10^{-6} \frac{L^2}{d}$$

L'expression de la flèche peut être mise sous la forme $V_{max} = K \frac{L^2}{d}$

avec $K = 141 \times 10^{-6}$

CORRIGE DE L'EXERCICE 2

1- Etude cinématique:

L = 3b - 2a - r= 3 x 5 - 2 x 5 - 3 = 0 le système est isostatique.

2- Détermination des efforts par la méthode des noeuds

Noeud B:

$$AB + \frac{2}{\sqrt{5}}BC - P\sin\alpha = 0$$

$$AB?$$

$$AB?$$

$$BC?$$

$$BC?$$

$$BC?$$

$$\Rightarrow$$

 $AB = P \sin \alpha + 2P \cos \alpha$ et $BC = -P\sqrt{5} \cos \alpha$

Noeud A:

$$AB - \frac{AD}{\sqrt{2}} = 0$$
$$AC + \frac{AD}{\sqrt{2}} = 0$$

 $\Rightarrow AD = \sqrt{2}P\sin\alpha + 2\sqrt{2}P\cos\alpha$ et $AC = -2P\cos\alpha - P\sin\alpha$

Source: www.almohandiss.com

218

Noeud D:

$$\sum M_{/D} = 0 \Rightarrow R_{c} = 2P \cos \alpha + P \sin \alpha$$

$$\sum M_{/C} = 0 \Rightarrow R_{DV} = 2P \cos \alpha + P \sin \alpha$$

$$CD + \frac{AD}{\sqrt{2}} - P \sin \alpha = 0$$

$$\frac{AD}{\sqrt{2}} - R_{DV} = 0$$

$$\Rightarrow CD = -2P \cos \alpha$$

Le système doit supporter la charge P suivant toutes les directions possibles. Etant données les directions les plus défavorables correspondent à $\alpha = 45^{\circ}$ et 0°; on remplace dans les expressions des efforts les valeurs de α , et on obtient:

barres	$\alpha = 0$	$\alpha = 45$	$L_{eff} = L$ (m)
AB	+ 2P	+ 2.12P	2.00
AC	- 2P	- 2.12P	1.00
AD	+ 2.83P	+ 3P	1.14
BC	- 2.24P	- 1.58P	2.24
CD	- 2P	- 1.41P	1.00

La barre la plus tendue est AD avec un effort de + 3P, elle doit être vérifiée à la résistance.

La barre la plus comprimée et en même temps la plus élancée est BC avec un effort de

- 2.24P, elle doit être vérifiée à la résistance et à la stabilité.

3- Vérification à la résistance:

$$\sigma_{\text{max}}^{+} = \frac{3P}{A} \le [\sigma_{+}] \Rightarrow P \le \frac{100 \times 225 \times 10^{-3}}{3} = 7.5 \text{ tf}$$
$$\sigma_{\text{max}}^{-} = \frac{2.24P}{S} \le [\sigma_{-}] \Rightarrow P \le \frac{70 \times 225 \times 10^{-3}}{3} = 7.04 \text{ tf}$$

$$\sigma_{\text{max}}^{-} = \frac{2.241}{\text{A}} \le [\sigma_{-}] \Rightarrow P \le \frac{70 \times 223 \times 10}{2.24} = 7.04$$

4- Vérification à la stabilité:

$$i_{\min} = \sqrt{\frac{I_{\min}}{S}} = 4.33$$
$$\lambda = \frac{\mu L_{eff}}{i_{\min}} = \frac{223.6 \times 1}{4.33} = 51.6 < \lambda_{\lim}$$

RESISTANCE DE MATERIAUX DE BASE 220

On utilise la formule empirique de Yssinski pour déterminer la contrainte critique:

$$\sigma_{cr} = a - b\lambda \text{ avec } a = 293 \text{ kgf/cm}^2 \text{ et } b = 1.94 \text{ pour le bois}$$

$$\sigma_{cr} = 293 - 1.94 \times 51.6$$

$$= 192.9 \text{ kgf/cm}^2$$

$$[\sigma]_s = \frac{\sigma_{cr}}{n_{st}} = 96.4 \text{ kgf / cm}^2$$

$$\frac{2.24P}{s} \le [\sigma]_s \Rightarrow P \le 9.7 \text{ tf}$$

donc P \leq min (7.5, 7.04, 9.7) \Rightarrow P_{max} \leq 7.04 tf

CORRIGE DE L'EXERCICE 3

Le système est une fois hyperstatique. On doit donc écrire l'équation de la déformée aux niveaux des appuis. La méthode des paramètres initiaux est utilisée pour déterminer les expressions de la déformée.

On écrit les équations universelles suivantes:

$$EI\theta(x) = EI\theta_0 + \frac{Mx}{1!} + \frac{R_A x^2}{2!} - \frac{P(x-a)^2}{2!} + \frac{R_B (x-2a)^2}{2!} + \frac{q(x-2a)^3}{3!}$$
$$EIV(x) = EIV_0 + EI\theta_0 x + \frac{Mx^2}{2!} + \frac{R_A x^3}{3!} - \frac{P(x-a)^3}{3!} + \frac{R_B (x-2a)^3}{3!} + \frac{q(x-2a)^4}{4!}$$
$$Les conditions aux limites:$$

Les conditions aux limites:

$$EIV(0) = 0 \Rightarrow EIV_0 = 0 \Rightarrow V_0 = 0$$

$$EI\theta(0) = 0 \Rightarrow EI\theta_0 = 0 \Rightarrow \theta_0 = 0$$

$$EIV(2a) = 0 \Rightarrow 2Ma^2 + R_A (2a)^2/6 - P(a)^3/6 = 0$$

$$\Rightarrow 2M + (4/3)R_Aa - Pa/6 = 0$$

On écrit les équations de l'équilibre statique:

$$\sum M_{A} = 0 \Longrightarrow M + Pa - 2R_{B}a + 2.5 qa^{2} = 0$$

$$\sum M_{B} = 0 \Longrightarrow M + 2R_{A}a - Pa + 0.5qa^{2} = 0$$

On a trois équation à trois inconnues qui résultent en:

$$R_{A} = \frac{11}{16} P - \frac{3}{8} qa$$

$$R_{\rm B} = \frac{5}{16}P + 1.375qa$$
$$M = -\frac{3}{8}Pa + \frac{1}{4}qa^2$$

Application numérique: pour a = 1.0 m, P = 2 t et q = 1 t/m

$$R_{A} = 1 t$$
$$R_{B} = 2 t$$
$$M = -0.5 t.m$$

La flèche est maximale pour $\theta(x) = 0$, on vérifie cette condition dans chaque zone de la poutre:

$$0 \le x \le 1 \Rightarrow -0.5 \ x + 0.5 \ x^2 = 0 \Rightarrow x = 0 \text{ ou } x = 1 \Rightarrow V(1) = \frac{-1}{12\text{EI}}$$
$$1 \le x \le 2 \Rightarrow -0.5 \ x + 0.5 \ x^2 - (x - 1)^2 = 0 \Rightarrow x = 1 \text{ ou } x = 2 \Rightarrow V(2) = 0$$
$$2 \le x \le 3 \text{ à l'extrémité libre } V(3) = \frac{-1}{8\text{EI}}$$
$$f_{\text{max}} = \max \left\{ \left| \frac{-1}{12\text{EI}} \right|, \left| \frac{-1}{8\text{EI}} \right| \right\} = \frac{1}{8\text{EI}}$$

222

RESISTANCE DES MATERIAUX DE BASE

CORRIGE DU SUJET 9

CORRIGE DE L'EXERCICE 1

1-Calcul des efforts axiaux et des déformations :

- a) Barres en séries :
- L'efforts normal est le même dans les deux tronçons

N + 75 = 0

$$\Rightarrow$$
 N = -75 KN

Les déformations dans chaque tronçon sont :

$$\Delta L_1 = \frac{NL_1}{E_1 A_1} = \frac{75 \times 1000}{200 \times 2400} = 0.16 \text{mm}$$
$$\Delta L_2 = \frac{NL_2}{E_2 A_2} = \frac{75 \times 2000}{120 \times 3500} = 0.36 \text{ mm}$$

b) Barres en parallèles :

 $N_1 + N_2 + 75 = 0$

Les deux barres subissent la même déformation

$$\Delta L_1 = \Delta L_2 \tag{1}$$

$$\frac{N_1 L_1}{E_1 A_1} = \frac{N_2 L_2}{E_2 A_2}$$
(2)

De (1) et (2) on obtient :

$$N2 = 52.17 \text{ KN}$$

D'où

$$\Delta L_1 = \Delta L_2 = \frac{52.17 \times 2000}{120 \times 3500} = 0.25 \text{mm}$$

La rigidité équivalente de n barres en série :

La déformation totale est égale à la somme des déformations de chaque barre :

Solutions 223

$$\Delta L = \sum \Delta L_i \Longrightarrow \Delta L = \sum \frac{N_i L_i}{E_i A_i}$$

L'effort normal étant le même dans toutes les barres, il vient donc :

$$\Delta L = N \sum \frac{L_i}{E_i A_i}$$
$$\Rightarrow \frac{\Delta L}{N} = \frac{1}{K_{eq}} = \sum \frac{1}{K_i}$$

La rigidité équivalente de n barres en parallèle :

L'effort normal est la somme de tous les efforts axiaux dans le n barres :

$$N = \sum N_i = \sum \frac{E_i A_i}{L_i} \Delta L_i$$

Comme $\Delta L = \Delta L_1 = \Delta L_2 = \dots = \Delta L_n$

$$\Rightarrow N = \Delta L \sum \frac{E_i A_i}{L_i}$$

On obtient ainsi la rigidité équivalente comme suit :

$$\frac{N}{\Delta L} = K_{eq} = \sum K_i$$

CORRIGE DE L'EXERCICE 2

Le schéma statique du portique est le suivant :

Calcul des réactions :

$$\sum F \uparrow = 0$$

$$\Rightarrow VA + VC = 1 - 40 \cos 45 = -27.28$$
(1)
$$\sum F \rightarrow = 0$$

$$\Rightarrow HA - HC + 40 \cos 45 = 0$$
(2)
$$\sum M_{/ \text{Bgauche}} = 0$$

$$\Rightarrow 2V_A - 1 \times 0.5 = 0 \Rightarrow V_A = 0.25 \text{ KN}$$
(3)
$$\sum M_{/ \text{Bdroite}} = 0$$

$$\Rightarrow V_C + 40 \times 1 \times \cos 45 - H_C = 0$$
(4)
$$de (1) \qquad V_C = -27.53 \text{ KN}$$

$$de (4) \qquad H_C = 0.75 \text{ KN}$$

$$de (2) \qquad H_A = -27.53 \text{ KN}$$

Les diagrammes des efforts internes :

Tronçon AD $0 \le x \le 1$ N = 27.53 KN T = - 0.25 KN M = 0.25 x ; M(0) = 0, M(1) = 0.25 KN.m

Tronçon BD : $0 \le x \le 1$

N = 27.53 KN T = -0.25 + x; T(0) = -0.25 KN; T(1) = +0.75 KN M = $0.25 (x+1) - 0.5 x^2$; M(0) = 0.25 KN.m; M(1) = 0 KN.m

Tronçon CE: $0 \le \theta \le \pi/2$

N = 27.53 cos θ - 0.75 sin θ ; N(0) = 18.94 KN; N($\pi/2$) = 27.53 KN T = 0.75 cos θ + 27.53 sin θ ; T(0) = 0.75 KN; T($\pi/2$) = +20 KN M = -27.53 (1-cos θ) - 0.75 sin θ ; M(0) = 0; M($\pi/2$) = -8.59 KN.m

Tronçon BE : $0 \le \theta \le \pi/2$

 $N = 27.53 \cos(\pi/2+\theta) - 0.75 \sin(\pi/2+\theta) + 40\sin\theta ; N(0) = 18.94 \text{ KN} ; N(\pi/2)$ = 27.53 KN $T = 0.75 \cos(\pi/2+\theta) + 27.53 \sin(\pi/2+\theta) - 40 \cos\theta ; T(0) = -20 \text{ KN} ; T(\pi/2) =$

-0.75 KN $M = -27.53 [1 - \cos(\pi/2 + \theta)] - 0.75 \sin(\theta + \pi/2) + 40\sin\theta; M(\theta) = -8.59$

KN.m; M(0) = 0

Diagramme de l'effort tranchant T

226

RESISTANCE DES MATERIAUX DE BASE

Diagramme du moment fléchissant M

La section dangereuse dans le tronçon AB correspond aux efforts suivants : $M_{max} = 0.28 \text{ kN.m}$ et N = 27.53 kN (cas d'une flexion composée)

La disposition rationnelle est celle qui minimise la contrainte maximale total.

Sachant que la contrainte normale provenant de l'effort normal est une traction (positive) donc la disposition (b) est meilleure car la contrainte maximale totale dans ce cas est égale à la somme de deux contraintes de signe opposé (allégement).

Dans ce cas

Les caractéristiques géométriques sont :

Les coordonnées du centre de gravité G :

$$y_{\rm G} = \frac{60 \times 5 \times 30 + 2 \times 10 \times 5 \times 2.5}{60 \times 5 + 5 \times 20} = 23.125 \text{ mm}$$

 \Rightarrow y_{max} = 60 - 23.125 = 36.875 mm

Le moment d'inertie I_{xx}

$$I_{xx} = \frac{5 \times (60)^3}{12} + 2 \times \frac{10 \times (5)^3}{12} = 90208 \text{ mm}^4$$

La contrainte normale maximale de traction est :

$$\Rightarrow \sigma_{+\text{max}} = \frac{27.53 \times 10^3}{400} + \frac{0.28 \times 10^5 \times 23.125}{90208} = +76 \text{ N/mm}^2$$

La contrainte normale maximale de compression est :

$$\Rightarrow \sigma_{-\text{max}} = \frac{27.53 \times 10^3}{400} - \frac{0.28 \times 10^5 \times 36.875}{90208} = -57.38 \text{ N/mm}^2$$

Tronçon BC

Section rectangulaire :

$$h = 2.5 b \Longrightarrow A = h \cdot b = 2.5 b^2$$

$$I = \frac{b \times h^3}{12} = \frac{(2.5)^3}{12}b^4 = 1.302b^4$$

Les efforts au niveau de la section dangereuse :

$$M_{max} = 8.59 \text{ KN.m}$$

$$N = 18.94 \text{ KN}$$

La contrainte normale maximale :

$$\Rightarrow \left| \sigma_{\text{max}} \right| = \frac{18.94 \times 10^3}{2.5b^2} - \frac{8.59 \times 10^5 \times 1.25b}{1.3b^4} \le 130$$
$$\Rightarrow 130 \text{ b}3 - 7576b - 825961 = 0 \qquad \Rightarrow b_{\text{min}} = 19.6 \text{ mm}$$

228 RESISTANCE DES MATERIAUX DE BASE

Pour une même surface d'une section de poutre, la forme rectangulaire a un moment résistant w = I / v_{max} plus faible que celui de la forme en T. Par conséquent cette dernière est plus appropriée pour le tronçon BC où le moment fléchissant est plus important.

CORRIGE DU SUJET 10

CORRIGE DE L'EXERCICE 1

1.Détermination de l'état de contrainte au point A:

$$\sigma_{x} = \frac{P}{S}$$

$$S = \frac{\pi}{4}(D^{2} - d^{2}) = \frac{\pi}{4}(20^{2} - 16^{2}) = 113.1 \text{mm}^{2}$$

$$\sigma_{x} = \frac{10000}{113.1} = 88.42 \text{N/mm}^{2}$$

$$\sigma_{y} = 0$$

$$\tau_{xy} = \frac{M_{x}D/2}{I_{p}} = \frac{16M_{x}}{\pi D^{3}(1 - \alpha^{4})}$$

$$a \text{vec}\alpha = \frac{d}{D}$$

$$\tau_{xy} = \frac{16 \times 60 \times 10^{3}}{\pi \times 20^{3}(1 - 0.8^{4})} = 64.68 \text{N/mm}^{2}$$

Détermination des contraintes normales principales et des contraintes tangentielles max:

$$\sigma_{1,2} = \frac{88.42}{2} \pm \sqrt{\left(\frac{88.42}{2}\right)^2 + (64.68)^2}$$

$$\sigma_1 = 122.55 \text{ N/mm}^2$$

$$\sigma_2 = -34.14 \text{ N/mm}^2$$

$$\tau_{\text{max}} = \frac{\sigma_1 - \sigma_2}{2} = 78.32 \text{ N/mm}^2$$

$$\frac{\sigma_1 - \sigma_2}{2} = 78.32 \text{ N/mm}^2$$

$$\frac{\sigma_1 - \sigma_2}{2} = 78.32 \text{ N/mm}^2$$

$$\frac{\sigma_1 - \sigma_2}{2} = 78.32 \text{ N/mm}^2$$

Les contrainte principales

Figure 1

-

230 RESISTANCE DES MATERIAUX DE BASE

Cercle de Mohr des contraintes

Figure 2

2. Vérification à la résistance:

-D'après le premier critère on doit vérifier si $\sigma_1 \leq [\sigma]$

on a $\sigma_1 = 122.5 < [\sigma]$

- La condition du deuxième critère s'ecrit:

$$\epsilon_{1} \leq [\epsilon]$$

$$\epsilon_{1} = \frac{1}{E} (\sigma_{1} - \nu \sigma_{2})$$

$$\epsilon_{1} = \frac{1}{2.1 \times 10^{5}} (122.5 + 0.3 \times 34.14) = 6.32 \times 10^{-4} < [\epsilon]$$

- Le troisième critère limite la contrainte tangentielle par

 $\begin{aligned} \tau_{max} &\leq [\tau] \\ \tau_{max} &= 78.32 < [\tau] \end{aligned}$

CORRIGE DE L'EXERCICE 2

Calcul des réactions:

$$\sum M_{/Cdroite} = 0 \Rightarrow H_{D} = 0$$

$$\sum M_{/A} = 0 \Rightarrow 4V_{D} - 2 \times 2 \times 3 - 10\sqrt{2} = 0 \Rightarrow V_{D} = 8 \text{ kN}$$

$$\sum F_{v} = 0 \Rightarrow V_{A} = 5 \text{ kN}$$

$$\sum F_{H} = 0 \Rightarrow H_{A} = 7.1 \text{ kN}$$

- Le Tracé des diagrammes des efforts internes:

Pour le tracé on procède par la méthode directe qui consiste à calculer les efforts aux niveaux des sections des limites des tronçons, ensuite de relier ces points par des droites ou des paraboles selon le cas de charge.

$$\begin{split} N_{A} &= (7.1 - 5)\sqrt{2} / 2 = 1.55 \text{ kN} \\ T_{A} &= (7.1 + 5)\sqrt{2} / 2 = 8.56 \text{ kN} \\ M_{A} &= 0 \\ N_{A'} &= 1.55 \text{ kN} \\ T_{A'} &= 8.56 - 10 = -1.44 \text{ kN} \\ M_{A'} &= 5x1 + 7.1x1 = 12.1 \text{ kN.m} \\ N_{B} &= 1.55 \text{ kN} \quad N_{B} \text{droite} = 0 \\ T_{Bgauche} &= -1.44 \text{ kN} \quad T_{B} \text{droite} = 5 - 10\sqrt{2}/2 = -2 \text{ kN} \\ M_{B} &= 5x2 + 7.1x2 - 10x\sqrt{2} = 10 \text{ kN.m} \\ N_{C} &= 0 \\ T_{C} &= -8 \text{ kN} \\ M_{C} &= 0 \end{split}$$

La colonne CD n'est soumise qu'à un effort de compression N = 8 kN. Ainsi on trace les diagrammes suivants:

Vérification à la résistance:

La section dangereuse se trouve au niveau de la charge concentrée dans le tronçon AB:

 $M_{max} = 12.1 \text{ kN.m}$ et N = 1.55 kN (cas d'une flexion composée)

$$\sigma_{\max} = \frac{N}{A} + \frac{My}{I}$$

avec

S = 120 ×60 -100 ×40 = 3200 mm²
I =
$$\frac{60 \times 120^3}{12} - \frac{40 \times 100^3}{12} = 530.67 \times 10^4 \text{ mm}^4$$

 $\Rightarrow \sigma_{\text{max}} = \frac{1550}{3200} + \frac{12.1 \times 10^6 \times 60}{530.67 \times 10^4} = 137.3 < [\sigma]$

Dimensionnement de la colonne:

$$N = 8 \text{ kN}$$
$$\sigma_{\text{max}} = \frac{N}{S} \le [\sigma]_{\text{s}}$$

On suppose que le flambement est élastique, et on utilise la formule d'Euler:

$$\sigma_{\rm cr} = \frac{\pi^2 E}{\lambda^2}$$
$$[\sigma]_{\rm s} = \frac{\sigma_{\rm cr}}{n_{\rm st}}$$

$$\lambda = \frac{\mu L}{i_{\min}} = \frac{1 \times 2000}{d/4}$$
$$\lambda = \frac{8000}{d}$$
$$\Rightarrow [\sigma]_s = \frac{\pi^2 \times 2.1 \times 10^5 d^2}{2 \times 64 \times 10^6}$$
$$\Rightarrow \sigma_{\max} = \frac{4 \times 8000}{\pi d^2} \le \frac{\pi^2 \times 2.1 \times 10^5 d^2}{2 \times 16 \times 10^6}$$

$$\Rightarrow d \ge \sqrt[4]{\frac{4 \times 8000 \times 2 \times 64 \times 10^6}{\pi^3 \times 2.1 \times 10^5}} = 28.16 \text{ mm}$$

On prend d = 30 mm eton vérifie l'élancement de la colonne:

234 RESISTANCE DES MATERIAUX DE BASE

CORRIGE DU SUJET 11

Vérification de la résistance de la poutre isostatique (a):

$$\sum M_{/Cg} = 0 \Rightarrow 2 - 2V_{B} + 20x1 = 0$$

$$\Rightarrow V_{B} = 11kN$$

$$\sum F_{V} = 0 \Rightarrow 20 + 5 - 11 - V_{D} = 0$$

$$\Rightarrow V_{D} = 14kN$$

$$\sum M_{/Cd} = 0 \Rightarrow M_{D} - 5x0.5 + 14 = 0$$

$$\Rightarrow M_{D} = -11.5kN$$

Détermination des efforts maximaux (sections dangereuses) et le tracé des diagrammes des efforts:

Tronçon CC': T = -9 kNM = -2 + 11(x + 2) - 20(x+1) = -9x

Tronçon DC':

T = -9 - 5 = -14 kNM = -11.5 + 14 x

Section triangulaire

La poutre n'étant pas symétrique (section triangulaire) et les contraintes admissibles de traction et de compression sont différentes, on doit alors vérifier les contraintes maximales de traction et de compression dues aux moments maximaux positif et négatif.

On calcule d'abord les caractéristiques géométriques de la section:

$$I = bh^{3}/36 = 2.88 \times 10^{6} \text{ mm}^{4}$$
$$y_{max} = 2h/3 = 80 \text{ mm} \text{ (fibres supérieures)}$$

et $y_{min} = h/3 = 40 \text{ mm.}$ (fibres inférieures)

on distingue deux sections dangereuses dans le diagramme du moment fléchissant:

- En travée
$$M_{max}^+$$
 = + 4.05 kN.m

$$\sigma_{\max}^{+} = \frac{M_{\max}^{+} y_{\min}}{I} = \frac{4.05 \times 10^{6} \times 40}{2.88 \times 10^{6}} = 56.25 \text{ N} / \text{mm}^{2} < [\sigma_{+}]$$

$$\sigma_{\max}^{-} = \frac{M_{\max}^{+} y_{\max}}{I} = \frac{4.05 \times 10^{6} \times 80}{2.88 \times 10^{6}} = 112.5 \text{ N/mm}^{2} < [\sigma_{-}]$$

- A l'encastrement M_{max} - = -11.5 kN.m

$$\sigma_{\max}^{+} = \frac{M_{\max}^{-} y_{\max}}{I} = \frac{11.5 \times 10^{6} \times 80}{2.88 \times 10^{6}} = 319.4 \,\text{N} \,/\,\text{mm}^{2} > [\sigma^{+}] \Rightarrow \text{la résistance}$$

n'est pas vérifiée

à titre indicatif on calcule la contrainte maximale de compression

$$\sigma_{\max}^{-} = \frac{M_{\max}^{-} y_{\min}}{I} = \frac{11.5 \times 10^{6} \times 40}{2.88 \times 10^{6}} = 159.7 \,\text{N} \,/\,\text{mm}^{2} < [\sigma^{-}]$$

Section trapézoïdale:

Quand on coupe la section du sommet à 15mm, on obtient une section trapézoïdale de petite base a = 7.5 mm.

les caractéristiques géométriques de cette section sont les suivantes:

236 RESISTANCE DES MATERIAUX DE BASE

$$y_{\min} = \frac{h(2a+b)}{3(a+b)} = \frac{105(2x7.50+60)}{3(7.50+60)} = 38.89mm$$

 $y_{max} = 80 - 38.89 = 66.11 mm$

$$I = \frac{h^3(a^2 + 4ab + b^2)}{36(a + b)} = \frac{105^3(7.50^2 + 4x7.50x60 + 60^2)}{36(7.50 + 60)} = 2.6x10^6 \,\mathrm{mm}^4$$

Les contraintes maximales à l'encastrement deviennent alors:

$$\sigma_{\max}^{+} = \frac{M_{\max}^{-} y_{\max}}{I} = \frac{11.5 \times 10^{6} \times 66.11}{2.6 \times 10^{6}} = 292.4 \text{ N/mm}^{2} < [\sigma_{+}]$$
$$\sigma_{\max}^{-} = \frac{M_{\max}^{-} y_{\min}}{I} = \frac{11.5 \times 10^{6} \times 38.89}{2.6 \times 10^{6}} = 172.0 \text{ N/mm}^{2} < [\sigma_{-}]$$

De même pour la travée on trouve:

$$\sigma_{\rm max}^+ = 60.56 {\rm N} / {\rm mm}^2 < [\sigma_+]$$

$$\sigma_{\rm max}^- = 103.0 \, {\rm Mm^2} < [\sigma_-]$$

On remarque que dans ce cas la résistance est vérifiée car en coupant la crête du triangle, le rapport y_{max}/I diminue et par conséquent la contrainte maximale diminue aussi car elle est proportionnelle à ce rapport. Il faut noter aussi qu'une légère hausse du rapport y_{min}/I n'a pas d'influence car les contraintes correspondantes sont assez loin des contraintes admissibles.

Rapport des flèches maximales:

La déformation élastique en flexion est inversement proportionnelle au moment d'inertie qui est la seule variable dans ce cas. Le rapport de la flèche maximale de la poutre en triangle sur celle correspondant à la section trapézoïdale s'écrit donc:

$$\frac{f_{\text{max}}^{\text{triangle}}}{f_{\text{max}}^{\text{trapèze}}} = \frac{I_{\text{trapèze}}}{I_{\text{triangle}}} = \frac{2.6 \times 10^6}{2.88 \times 10^6} = 0.9$$

Cet exemple nous montre l'importance des caractéristiques géométriques des formes.

En coupant la crête du triangle, on économise une quantité de matériaux d'environ de 12% (S_{trapèze} / S_{triangle}), on diminue la rigidité de la poutre pratiquement de 10% (rapport de flèches), tout en atténuant la contrainte maximale provoquée par le moment fléchissant maximal.

Poutre continue sur plusieurs appuis:

Pour déterminer le diagramme du moment fléchissant on utilise la méthode des trois moments:

L'appui A est un appui de rive on peut prendre donc $M_1 = -2kN.m$ comme effort interne, ainsi on aura une inconnue de moins et la travée de rive sera considérée sans chargement.

Pour la travée centrale uniformément chargée on a:

 $R_2^{\circ d} = R_2^{\circ} = 10 \text{ kN}$ $R_3^{\circ g} = 10 \text{ kN}$ $\theta_2^{d} = \theta_3^{g} = 10 / 3\text{EI}$

et pour la travée de droite chargée par une force concentrée on a:

$$R_3^{\circ d} = 2.5 \text{ kN} \Rightarrow R_3^{\circ} = 10 + 2.5 = 12.5 \text{ kN}$$
$$R_4^{\circ g} = R_4^{\circ} = 2.5 \text{ kN}$$
$$\theta_3^{d} = \theta_4^{g} = 5 / 16\text{EI}$$

On établit les équations des trois moments

pour i = 2 $M_1 L_1 + 2 M_2 (L_1 + L_2) + M_3 L_2 = -6 EI (\theta_2^g + \theta_2^d)$ $4 M_2 + M_3 = -9$ pour i = 3 $M_2 L_2 + 2 M_3 (L_2 + L_3) + M_4 L_3 = -6 EI (\theta_3^g + \theta_3^d)$ $2 M_2 + 8 M_3 + M_4 = -21.9$ pour i = 4 $M_3 L_3 + 2 M_4 (L_3 + L_4) = -6 EI (\theta_4^g + \theta_4^d)$ $M_3 + 2 M_4 = -1.88$

On obtient ainsi un système de trois équations à trois inconnues. La résolution de ce système nous donne:

$$M_2 = -1.98 \text{ kN.m}$$

 $M_3 = -3.07 \text{ kN.m}$
 $M_4 = 0.6 \text{ kN.m}$

On détermine les réactions aux appuis:

$$R_{i} = R_{i}^{0} + \frac{M_{i-1} - M_{i}}{L_{i-1}} + \frac{M_{i+1} - M_{i}}{L_{i}}$$

$$R_{1} = \frac{-1.98 + 2}{1} = 0.02 \text{kN}$$

$$R_{2} = 10 + \frac{-2 + 1.98}{1} + \frac{-3.07 + 1.98}{2} = 9.435 \text{kN}$$

$$R_{3} = 12.5 + \frac{-1.98 + 3.07}{2} + \frac{0.6 + 3.07}{1} = 16.715 \text{kN}$$

$$R_{4} = 2.5 + \frac{-3.07 - 0.6}{1} = -1.17 \text{kN}$$

On trace ainsi les diagrammes de l'effort tranchant et du moment fléchissant:

Tronçon AB:

$$T = 0.02 \text{ kN}$$

 $M = -2 + .002x$

Tronçon BC:

T = 9.455 - 10x $T = 0 \Rightarrow x = 0.946 m$ $M = -2 + 0.02(x+1) + 9.435x - 5x^{2}$ $M_{max}^{+} = M(0.946) = 2.48 \text{ kN.m}$

Tronçon CC':

T = 6.17 kN.mM = -2 + 0.02(x + 2) + 9.435(x+2) + 16.715x - 20(x+1) = 6.17x - 3.07

Tronçon DC':

$$T = 6.17 - 5 = 1.17$$

M = 0.6 - 1.17x

Le moment maximal en valeur absolue dans le cas de la poutre continue est de 3.07 kN.m. Le rapport de ce moment sur celui de la poutre (a) est:

r = 3.07/11.5 = 0.26

RESISTANCE DES MATERIAUX DE BASE

CORRIGE DU SUJET 12

CORRIGE DE L'EXERCICE 1

En tenant compte de la compatibilité géométrique du système, on peut écrire les allongements dans les câbles en fonction des allongements du poteau:

$$\Delta L_1 = (\Delta h_1 + \Delta h_2 + \Delta h_3) \cos \alpha_1$$
$$\Delta L_2 = (\Delta h_2 + \Delta h_3) \cos \alpha_2$$
$$\Delta L_3 = \Delta h_3 \cos \alpha_3$$

Les tension des câbles sont proportionnelles à leurs allongements:

$$T_i = \frac{ES_c}{L_i} \Delta L_i$$

On calcule alors les longueurs des câbles à partir de l'axe du poteau et on obtient

$$L_{1} = \sqrt{(6+6+6)^{2} + 10^{2}} = 20.6m$$
$$L_{2} = \sqrt{(6+6)^{2} + 10^{2}} = 15.6m$$
$$L_{3} = \sqrt{6^{2} + 10^{2}} = 11.7m$$

On calcule ainsi les valeurs des cosinus des angles que forment les câbles avec l'axe du poteau:

$$\cos\alpha_1 = (h_1 + h_2 + h_3) / L_1 = 0.87$$

 $\cos\alpha_2 = (h_2 + h_3) / L_2 = 0.77$
 $\cos\alpha_3 = h_3 / L_3 = 0.51$

Source: www.almohandiss.com

240

En remplaçant ces valeurs dans les expressions des ΔL_i on obtient:

$$\Delta L_1 = 2.59 \text{ mm}, \quad \Delta L_2 = 1.62 \text{ mm}, \quad \Delta L_3 = 0.98 \text{ mm}$$

Les tensions dans les câbles sont donc:

$$T_{1} = \frac{2.1 \times 10^{5} \times 78.54}{20600} 2.59 = 2.07 \text{kN}$$
$$T_{2} = \frac{2.1 \times 10^{5} \times 78.54}{15600} \times 1.62 = 1.71 \text{kN}$$
$$T_{3} = \frac{2.1 \times 10^{5} \times 78.54}{11700} \times 0.98 = 1.41 \text{kN}$$

Vérification à la résistance avec $T_{max} = 2.07 \text{ kN}$

$$\sigma_{\rm max} = \frac{2070}{78.53} = 26.35 \,{\rm N/mm^2} < [\sigma]$$

Les équations d'équilibre de chaque section au niveau de chaque tronçon s'écrivent:

$$N_1 = -10 - 2 T_1 \cos \alpha_1 = -13.6 \text{ kN}$$

$$N_2 = -10 - 2 T_1 \cos \alpha_1 - 2 T_2 \cos \alpha_2 = -16.23 \text{ kN}$$

$$N_3 = -10 - 2 T_1 \cos \alpha_1 - 2 T_2 \cos \alpha_2 - 2 T_3 \cos \alpha_3 = -17.67 \text{ kN}$$

Vérification à la stabilité:

Pour une section circulaire creuse le rayon de giration est donné par:

$$i_{\min} = \frac{1}{4}\sqrt{D^2 + d^2}$$

avec

 $D_1 = 50 \mbox{ mm}$, $D_2 = 60 \mbox{ mm}$, $D_3 = 70 \mbox{ mm}$, et d = 40 \mbox{ mm} on obtient alors:

$$i_{min3} = 20.16 \text{ mm}, \quad i_{min2} = 18.03 \text{ mm}, \quad i_{min1} = 16.01 \text{ mm}$$

 $\lambda_1 = 6000 \text{ x } 0.5 / 20.16 = 149 \implies \sigma_{cr1} = \pi^2 \text{E} / \lambda_1^2 = 139 \text{ N/mm}^2$

242 RESISTANCE DES MATERIAUX DE BASE

$$\Rightarrow [\sigma]_{s3} = \sigma_{cr1} / n_{st} = 93.4 / 2.5 = 37.3 \text{ N/mm}^2$$

$$\lambda_2 = 6000 \text{ x } 0.5 / 18.03 = 166 \Rightarrow \sigma_{cr2} = 75. \text{ N/mm}^2$$

$$\Rightarrow [\sigma]_{s2} = \sigma_{cr2} / n_{st} = 115 / 2.5 = 30. \text{ N/mm}^2$$

$$\lambda_3 = 6000 \text{ x } 0.5 / 16.01 = 187 \Rightarrow \sigma_{cr3} = 59. \text{ N/mm}^2$$

$$\Rightarrow [\sigma]_{s1} = \sigma_{cr3} / n_{st} = 75 / 2.5 = 24. \text{ N/mm}^2$$

Les contraintes de compression qui se développent dans chaque tronçon sont alors:

$$\sigma_{max1} = 13600 / 707 = 19.23 \text{ N/mm}^2 < 24$$

$$\sigma_{max2} = 16230 / 1571 = 10.33 \text{ N/mm}^2 < 30$$

$$\sigma_{max1} = 17670 / 2592 = 6.82 \text{ N/mm}^2 < 37.3$$

CORRIGE DE L'EXERCICE 2

La condition d'égale résistance à la flexion des fibres extrêmes s'écrit:

 y_2 est l'ordonnée du centre de gravité de la section, et donnée par la formule:

$$y_2 = \frac{\sum y_i S_i}{S} = \frac{2 \times 8 \times 1 + 2 \times h \times h/2}{2 \times 8 + 2 \times h}$$

$$\frac{h}{3} = \frac{16 + h^2}{16 + 2h} \implies h^2 - 16h + 48 = 0 \implies h_1 = 4 \text{ cm} \quad \text{et} \quad h_2 = 12 \text{ cm}.$$

CORRIGE DU SUJET 13

CORRIGE DE L'EXERCICE 1

- Calcul des réactions:

$$\Sigma M_{/Cg} = 0 \Rightarrow 2V_{A} - 5 \ge 2 \ge 1 = 0$$

$$\Rightarrow V_{A} = 5.0 \ge N$$

$$\Sigma F_{/V} = 0 \Rightarrow 5 \ge 3 - V_{A} - V_{B} = 0$$

$$\Rightarrow V_{B} = 10.0 \ge N$$

$$\Sigma M_{/B} = 3 \ge 5 - 15 \ge 1.5 + M_{B} = 0$$

$$\Rightarrow M_{B} = 7.5 \ge N.m$$

$$\Sigma F_{/H} = H_{B} = 0$$

5 kN/m

-Diagrammes des efforts N, T et M:

Tronçon AC :
$$0 \le \theta \le \pi/2$$

N = 5 cos θ (1 - 2 cos θ)
T = 5 sin θ (2 cos θ - 1)
M = 10 cos θ (1 - cos θ)

Fig. 2

244 RESISTANCE DES MATERIAUX DE BASE

Pour le tracé des diagrammes, on calcul M, N, et T aux niveaux des section intermédiaires dans le tronçon curviligne.

θ	0	30	45	60	75	90	0
Ν	-5.00	-3.17	-1.46	0.00	0.62	0.00	kN
Т	0	1.83	1.46	0.00	-2.33	-5.00	kN
Μ	0	1.16	2.07	2.50	1.92	0.00	kN.m

CORRIGE DE L'EXERCICE 2

L'aire de la section:

L'aire d'une section quelconque est définie par:

$$S = \iint_{s} ds$$

dans ce cas ds = e dz \Rightarrow S = $\int_0^L e^{dz} = e^{L}$

Le moment d'inertie d'une section est défini par:

$$I_z = \iint_s y^2 ds$$

avec $y = A \cos \omega z$

d'où
$$I_z = \int_0^L (A \cos \omega z)^2 edz = eA^2 \int_0^L \cos^2 \omega z dz$$

on remplace $\cos^2 \omega z = (1/2) (1 + \cos 2\omega z)$, on obtient alors:

$$I_z = eA^2 \int_0^L \frac{1}{2} (1 + \cos 2\omega z) dz$$
$$I_z = I_z = \frac{eA^2}{2} \left[z + \frac{1}{2\omega} \sin 2\omega z \right]_0^L$$
$$I_z = \frac{eA^2}{2} \left(L + \frac{\sin 2\omega L}{2\omega} \right)$$

CORRIGE DE L'EXERCICE 3

Le flambement d'une barre soumise à la compression est un phénomène d'instabilité car la force appliquée crée un moment fléchissant qui sera d'autant plus important que la courbure de la poutre provoqué par ce même moment sera grande.

246 RESISTANCE DES MATERIAUX DE BASE

CORRIGE DU SUJET 14

CORRIGE DE L'EXERCICE 1

1 Etude cinétique

 $L = 13 \times 3 - 18 \times 2 - 3 = 0$

Le système est isostatique

2 Détermination des efforts

Les angles entre les barres ne sont pas réguliers, on utilisera alors la méthode analytique (méthode des noeuds). On calcule d'abord les réactions aux appuis:

7.5 V_A -20 × 6 = 0
$$\Rightarrow$$
 V_A = 16 kN
V_E + V_A =20 \Rightarrow V_E = 4 kN

Nœud A

$$\frac{0.25}{1.52} AF - 16 = 0 \Rightarrow AF = 97.32 kN$$
$$\frac{1.5}{1.52} AF + AB = 0 \Rightarrow AB = -96 kN$$

Nœud B

$$BF = -20kN$$

 $BC = AB = -96kN$

Nœud F

$$\frac{0.25}{1.52} AF + BF + \frac{0.25}{1.03} FC = 0 \implies FC = 16.5 kN$$
$$-\frac{1.5}{1.52} AF + \frac{1}{1.03} FC + FG = 0 \implies FG = 80 kN$$

Nœud G

$$GC = 0$$

 $GH = FG = 80kN$

Nœud C

$$\frac{0.25}{1.03} \text{FC} + \frac{0.25}{2.02} \text{CH} = 0 \Rightarrow \text{CH} = -32 \text{kN}$$
$$\text{CD} + \frac{2}{2.02} \text{CH} - \frac{1}{1.03} \text{FC} = 0 \Rightarrow \text{FG} = -48 \text{kN}$$

Nœud G

$$DH = 0$$
$$DE = CD = -48kN$$

Nœud H

$$\frac{0.25}{2.02}CH + \frac{0.25}{3.01}HE = 0 \Rightarrow HE = 48.17kN$$

Dimensionnement à la stabilité

La barre la plus comprimée est AB=-96 kN de longueur L =1.5m

La barre la plus élancée est DE = -48 kN de longueur L = 3.0 m

On dimensionne avec la barre la plus élancée et on vérifie la stabilité de la barre la plus comprimée et la résistance de la barre la plus sollicitée.

supposons que $\lambda > \lambda_{lim}$ pour les deux barres:

$$N \leq [P_{st}] = \frac{P_{cr}}{n_{st}} = \frac{\pi^2 E \times \pi D^4 / 64}{n_{st} (\mu L)^2} = \frac{\pi^3 E D^4}{64 n_{st} L_{eff}^2}$$
$$D \geq \left(\frac{N \times 64 \times n_{st} \times L^2}{\pi^2 E}\right)^{1/4} = 54.7 \text{mm}$$

Calculons l'élancement

$$\lambda = \frac{\mu L}{i} \text{ avec } i = \frac{D}{4}$$
$$\lambda = \frac{3000 \times 4}{54.7} = 219 > \lambda_{\text{lim}}$$

Vérifions la stabilité de la barre la plus comprimée

$$[P_{st}] = \frac{P_{cr}}{n_{st}} = \frac{\pi^3 \times 2 \times 10^5 \times (54.7)^4}{64 \times 2 \times (1500)^2} = 192.8 \text{ kN}$$

 $N = 96 \text{ kN} < [P_{st}] \Rightarrow$ la stabilité est vérifiée

248 RESISTANCE DES MATERIAUX DE BASE

Vérification à la résistance

La barre la plus sollicité est AF = 97.32 kN

$$\sigma = \frac{N}{S} = \frac{4 \times 97.32 \times 10^3}{\pi (54.7)^2} = 41.4 \text{ N/mm}^2 < 160$$

⇒ Erreur ! Signet non défini. la résistance est vérifiée

CORRIGE DE L'EXERCICE 2

La capacité de résistance à une sollicitation donnée dépend entre autres de la forme de la section c.à.d de ses caractéristiques géométriques.

Cisaillement

$$\tau = \frac{\mathrm{T}}{\mathrm{S}} \leq [\tau] \Longrightarrow \mathrm{T} = \mathrm{S}[\tau]$$

L'effort tranchant de résistance est proportionnel à l'aire de la section. Les efforts de résistance au cisaillement de toutes les formes des sections ayant les mêmes aires sont donc identiques.

Stabilité élastique à la compression

$$P_{\rm cr} = \frac{\pi^2 E I_{\rm min}}{(\mu L)^2}$$

$$\tau^2 EI_{mir}$$

 $\frac{\pi}{(\mu L)^2}$ est le même pour toutes les sections. L'effort maximal de

résistance à la stabilité est donc proportionnel à Imin.

Pour comparer les moments d'inertie des différentes sections, on exprimera ce dernier en fonction de l'aire S d'une section.

- Pour la section circulaire pleine: $S = \frac{\pi d^2}{4} \Rightarrow d = 2\sqrt{\frac{S}{\pi}}$

$$I_{\min} = \frac{\pi d^4}{64} = \frac{\pi \times 16 \times A^2}{64\pi^2} = 0.08S^2$$

- Pour la section carrée: $S = a^2 \implies a = \sqrt{S}$

$$I_{\min} = \frac{a^4}{12} = \frac{S^2}{12} = 0.083S^2$$

- Pour la section rectangulaire: $S = b \times h = 2b^2 \Longrightarrow b = \sqrt{\frac{S}{2}}$

$$I_{\min} = \frac{2b^4}{12} = \frac{2S^2}{4 \times 12} = 0.04S^2$$

- Pour la section circulaire creuse:

$$S = \frac{\pi}{4} \left(D^2 - d^2 \right) = \frac{\pi}{4} \left[D^2 - (0.6D)^2 \right] = 0.16\pi D^2 \implies D = 1.41\sqrt{S}$$
$$I_{\min} = \frac{\pi}{64} \left[D^4 - (0.6D)^4 \right] = 0.043 D^4 = 0.043 (1.41\sqrt{S}) = 0.169 S^2$$

La plus petite force critique correspond au plus petit moment d'inertie minimal de celui de la section rectangulaire. L'ordre décroissant de la stabilité en compression des formes est le suivant:

1/ La section creuse: r =
$$\frac{P_{cr}}{P_{cr-rec \tan gle}} = \frac{0.169S^2}{0.04S^2} = 4.2$$

2/ La section carrée: r = $\frac{0.083S^2}{0.04S^2} = 2.08$
3/ La section circulaire: r = $\frac{0.08S^2}{0.04S^2} = 2$

4/ La section rectangulaire: r = 1

Flexion pure

Calcul du moment résistant:

$$\sigma_{\max} = \frac{My}{I} \le [\sigma]$$
$$\Rightarrow M_{\text{res}} = \left(\frac{I}{y}\right)_{\max} \times [\sigma]$$

Le moment résistant est proportionnel à $\left(\frac{I}{y}\right)_{max}$

- Pour la section circulaire pleine :

$$\frac{I}{y} = \frac{\pi d^4}{64} \times \frac{2}{d} = \frac{\pi d^3}{32} = \frac{\pi}{32} \left(2\sqrt{\frac{S}{\pi}} \right)^3 = 0.141\sqrt{S}$$

- Pour la section carrée: $\frac{I}{y} = \frac{a^4}{12} \times \frac{2}{a} = \frac{a^3}{6} = \frac{\left(\sqrt{S}\right)^3}{6} = 0.167S\sqrt{S}$

- Pour la section rectangulaire:

$$\frac{I}{y} = \frac{b(2b)^3}{12} \times \frac{2}{2b} = \frac{2b^3}{3} = \frac{2}{3} \left(\sqrt{\frac{S}{2}}\right)^3 = 0.236S\sqrt{S}$$

250 RESISTANCE DES MATERIAUX DE BASE

- Pour la section creuse:
$$\frac{I}{y} = \frac{0.169S^2 \times 2}{1.41\sqrt{S}} = 0.24S\sqrt{S}$$

Il est évident que la section circulaire présente le plus petit moment résistant. Le classement en fonction des moments résistants sera donc:

1/ La section creuse:
$$r = \frac{M_{res}}{M_{res-cercle}} = \frac{0.24S\sqrt{S}}{0.141S\sqrt{S}} = 1.7$$

2/ La section rectangulaire: $r = \frac{0.236S\sqrt{S}}{0.141S\sqrt{S}} = 1.67$
3/ La section carrée: $r = \frac{0.167S\sqrt{S}}{0.141S\sqrt{S}} = 1.18$

4/ La section circulaire: r = 1

Effort tranchant

$$\tau = \frac{\mathrm{TS}^*}{\mathrm{Ib}} \leq [\tau] \Longrightarrow \mathrm{T}_{\mathrm{res}} = \frac{\mathrm{Ib}}{\mathrm{S}^*} [\tau]$$

L'effort tranchant résistant est proportionnel à $\left(\frac{Ib}{S^*}\right)$

- Pour une section rectangulaire: $\tau = \frac{3T}{2S} \le [\tau] \Longrightarrow T_{res} = \frac{2}{3}S[\tau]$

- Pour une section carrée: $\tau = \frac{3T}{2S} \le [\tau] \Rightarrow T_{res} = \frac{2}{3}S[\tau]$

- Pour une section circulaire:
$$\tau = \frac{4T}{3S} \le [\tau] \Rightarrow T_{res} = \frac{3}{4}S[\tau]$$

- Pour une section creuse:
$$S^* = \frac{2\left(\frac{D}{2}\right)^3}{3}$$
 et $b = 0.4D \Rightarrow T_{res} = 0.41S[\tau]$

Le plus petit effort tranchant résistant est celui de la section creuse. L'ordre décroissant des efforts par rapport à ce dernier devient alors:

1/ La section circulaire pleine:
$$r = \frac{3}{4 \times 0.41} = 1.83$$

2/ La section carrée et rectangulaire: $r = \frac{2}{3 \times 0.41} = 1.67$

4/ La section creuse: r = 1.0

La torsion

$$\tau = \frac{M_x}{W_t} \le [\tau] \Longrightarrow M_{x-res} = W_t[\tau] \text{ avec } W_t = \frac{I_P}{R} \text{ pour lessec tionscirculaires}$$

Le moment de torsion résistant est proportionnel à wt.

- Pour la section circulaire pleine: $W_t = \frac{\pi d^4}{32} \times \frac{2}{d} = \frac{\pi d^3}{16} = 0.282S\sqrt{S}$
- Pour la section creuse: $W_t = 0.043D^4 \times \frac{2}{D} = 0.086D^3 = 0.024S\sqrt{S}$
- Pour la section carrée: $W_t = \alpha hb^2 = 0.208S\sqrt{S}$
- Pour la section rectangulaire:

$$W_{t} = \alpha hb^{2} = 0.246 \times 2 \times \left(\sqrt{\frac{S}{2}}\right)^{3} = 0.174S\sqrt{S}$$

L'ordre décroissant des moments résistant de torsion par rapport à celui de la section rectangulaire est alors:

1/ La section circulaire: r = 1.62

- 2/ La section creuse: r = 1.38
- 3/ La section carrée: r = 1.2
- 4/ La section rectangulaire: r = 1

Tableau récapitulatif: classement des efforts résistants dans l'ordre décroissant

Flexion pure	Effort tranchant	Cisaillement	Stabilité (comp.)	Torsion
creuse	circulaire pleine	Les efforts résistants	creuse	Circulaire pleine
rectangulaire	Carrée / rectangulaire	de toutes les	carrée	creuse
carrée	creuse	sections sont	circulaire pleine	carrée
Circulaire pleine		identiques	rectangulaire	rectangulaire

RESISTANCE DES MATERIAUX DE BASE

CORRIGE DU SUJET 15

CORRIGE DE L'EXERCICE 1

Vérification à la résistance

La console est sollicitée par une flexion composée, la section dangereuse est à l'encastrement. On calcule donc les efforts internes au niveau de l'encastrement.

N = -400 kN

$$M_y = 50 \times 1.2 = 60$$
 kNm
 $M_z = 50 \times (1.2)^2/2 + 400 \times 0.2 = 116$ kNm

La contrainte normale due à la flexion composée en un point de coordonnées y et z est donnée par:

$$\sigma = \frac{N}{S} + \frac{M_y z}{I_y} + \frac{M_z y}{I_z}$$

en coordonnées polaire cette relation peut être mise sous la forme:

$$\sigma = \frac{N}{S} + \frac{M_y R \cos \theta}{I_y} + \frac{M_z R \sin \theta}{I_z}$$

La contrainte est maximale pour $\frac{d\sigma}{d\theta}$

$$\Rightarrow -\frac{M_y R \sin \theta}{I_y} + \frac{M_z R \cos \theta}{I_z} = 0$$

$$\Rightarrow tg\theta = \frac{M_z}{M_y} = \frac{116}{60}$$

d'où $\theta_{\rm m}$ = 62.65 °

$$\sigma_{\max,\min} = \frac{N}{S} \pm \left| \frac{M_y R \cos \theta_m}{I_y} \right| \pm \left| \frac{M_z R \sin \theta_m}{I_z} \right|$$

 $\sigma_{\max,\min} = \frac{400 \times 10^3}{\pi (200)^2} \pm \frac{60 \times 10^6 \times 200 \cos 62.65}{\pi \times 400^4 / 64} \pm \frac{116 \times 10^6 \times 200 \sin 62.65}{\pi \times 400^4 / 64}$

Source: www.almohandiss.com

252

$$\left|\sigma_{\min}\right| = 23.97 < \left[\sigma_{-}\right]$$

 $\sigma_{\rm max} = 17.61 > [\sigma_+]$

Le critère de résistance n'est pas vérifié.

Vérification à la rigidité

On détermine la flèche de l'extrémité libre par la méthode des paramètres initiaux.

Ecrivons l'équation de la déformée:

$$EIV(x) = EIV_0 + EI\theta_0 x + 116\frac{x^2}{2} + 50\frac{x^4}{24} - 60\frac{x^3}{6}$$

à l'encastrement les paramètres initiaux V_0 et θ_0 sont nuls, et à l'extrémité libre:

$$EI(1.2) = \left[116 \frac{(1.2)^2}{2} + 50 \frac{(1.2)^4}{24} - 60 \frac{(1.2)^3}{6} \right] \times 10^{12}$$
$$\Rightarrow f_{max} = V(1.2) = \frac{70.56 \times 10^{12}}{1.8 \times 10^4 \times \pi \times 400^4 / 64} = 3.12 \text{mm} < \frac{1200}{300} = 4 \text{mm}$$

Le critère de rigidité est vérifié.

CORRIGE DE L'EXERCICE 2

L'équation de l'axe neutre s'écrit:

$$1+\frac{zz_p}{i_y^2}+\frac{yy_p}{i_z^2}=0$$

Pour déterminer le noyau central de la section on utilise les relations entre les coordonnées du point d'application de la force excentrée et les points d'intersection de l'axe neutre avec les axes principaux de la section quand ce dernier contourne la section.

$$y_{\rm N} = -\frac{i_z^2}{y_{\rm p}}$$
 et $z_{\rm N} = -\frac{i_y^2}{z_{\rm p}}$

La section est symétrique par rapport à l'axe oz, il suffit donc de déterminer les positions de la force excentrée correspondant aux positions 1-1, 2-2, 3-3 et 4-4 de l'axe neutre et de les relier.

A = 100 × 60 - 30 × 30 16Erreur ! Signet non défini. 2 = 4200
$$z_{g} = \frac{100 \times 600 \times 30 - 2 \times 30^{2} \times 45}{4200} = 23.57 \text{ cm}$$

254 RESISTANCE DES MATERIAUX DE BASE

$$I_{z} = \frac{30 \times 100^{3}}{12} + \frac{30 \times 40^{3}}{12} = 266 \times 10^{4} \text{ cm}^{4}$$

$$I_{y} = \frac{100 \times 30^{3}}{12} + \frac{40 \times 30^{3}}{12} + 30 \times 100 \times (15 - 23.57)^{2} + 40 \times 30 \times (36.43 - 15)^{2} = 108.6 \times 10^{4} \text{ cm}^{4}$$

$$i_{y} = \sqrt{\frac{108.6 \times 10^{4}}{4200}} = 16.08 \text{ cm} \text{ et } i_{z} = \sqrt{\frac{266 \times 10^{4}}{4200}} = 25.17 \text{ cm}$$

Position 1-1:

$$y_{\rm N} = \infty \ z_{\rm N} = -23.57 {\rm cm}$$

$$\Rightarrow$$
 y_p = $-\frac{(25.17)^2}{\infty} = 0$ et z_p = $\frac{(16.08)^2}{23.57} = 10.97$ cm

Position 2-2

$$y_N = 50 \text{cm } z_N = \infty$$

$$\Rightarrow$$
 y_p = $-\frac{(25.17)^2}{50}$ = -12.67cm et z_p = $\frac{(16.08)^2}{\infty}$ = 0

Position 3-3

$$y_{\rm N} = 56.43 \,{\rm cm}$$
 $z_{\rm N} = 56.43 \,{\rm cm}$

$$\Rightarrow$$
 y_p = $-\frac{(25.17)^2}{56.43}$ = -11.22 cm et z_p = $\frac{(16.08)^2}{56.43}$ = -4.58 cm

Position 4-4

$$y_N = \infty z_N = 76.43$$
cm

$$\Rightarrow$$
 y_p = $-\frac{(25.17)^2}{\infty} = 0$ et z_p = $\frac{(16.08)^2}{36.43} = -7.10$ cm

On trace le noyau central de la section comme l'indique la figure ci-dessous.

Solutions 255

256 RESISTANCE DES MATERIAUX DE BASE

CORRIGE DU SUJET 16

CORRIGE

L'organigramme de calcul de stabilité est représenté sur le schéma de la figure 1.

Le programme en BASIC est le suivant :

```
5
    CLS
10 REM "Dimensionnement à la stabilité d'une poutre"
20 READ GA, GB, F
30 DATA 160 ,12 ,0.5
40 DIM A(3, 15)
50 FOR I = 1 TO 3
70
   FOR J = 1 TO 15
75 READ A(I, J)
80
   NEXT J
85 NEXT I
90 DATA 0,10,20,30,40,50,60,70,80,90,100,110,120,130,140
95 DATA
1.,.98,.96,.94,.92,.89,.86,.81,.75,.69,.6,.52,.45,.40,.36
110 DATA
1.,.97,.93,.90,.87,.79,.71,.49,.38,.31,.25,.22,.18,.16
120 INPUT " LA LONGUEUR DU POTEAU EST "; CL
130 INPUT " LE COEFFICIENT DU MODE DE FIXATION EST "; U
140 INPUT " LA CHARGE EST "; P
150 INPUT " LA TOLERENCE EST:"; E
160 INPUT " LA NATURE DU MATERIAU BOIS/ACIER "; N$
170 IF N$ = "BOIS" THEN 197
180 \text{ LET G} = \text{GA}
185 \text{ LET IM} = 1
186 GOTO 190
197 \text{ LET } \text{G} = \text{GB}
188 \text{ LET IM} = 2
190 LET S = P/(F^*G)
200 PRINT "LA FORME DE LA SECTION EST"
201 PRINT "C : circulaire, R:rectangulaire"
202 PRINT "CC: Circulaire creuse, RC: rectangulaire
creuse"
203 INPUT "C, R, CC, RC ?"; S$
210 IF S$ = "C" THEN 250
220 IF S$ = "R" THEN 310
230 IF S$ = "CC" THEN 370
240 IF S$ = "RC" THEN 450
245 PRINT "CE PROGRAMME NE CALCUL PAS CETTE FORME DE
SECTION"
246 END
```

Solutions 257

```
250 LET D = SQR(4 * S / 3.14)
270 LET ri = D / 4
280 LET R$ = "LE DIAMETRE D EST ="
290 LET OUTPUT = D
300 GOTO 1000
310 INPUT "LE RAPORT B/H <= 1"; Y
320 LET DH = SQR(S / Y)
330 LET ri = y*DH^{2}/SQR(12)
340 LET R$ = "LA LONGUEUR DE LA SECTION EST ="
350 \text{ LET OUTPUT} = \text{DH}
360 GOTO 1000
370 INPUT "L'EPAISSEUR T EST "; T
380 \text{ LET DI} = (S - 3.14 * T^{2}) / (3.14 * T)
390 LET DE = DI + 2 * T
400 LET SMI = 3.14 * (H ^ 4 - DI ^ 4) / 64
410 LET ir = SQR(SMI / S)
420 LET R$ = "LE DIAMETRE EXTERIEUR D EST ="
430 LET OUTPUT = DE
440 GOTO 1000
450 INPUT "L'EPAISSEUR T EST"; T
460 INPUT "LE RAPORT B/H <= 1 (SECTION INTERIEURE)
                                                        EST";
Y
480 LET DB = (S - 4 * T^{2} * Y) / (2 * T + 2 * T * Y)
890 LET DH = Y * DB + 2 * T * (Y - 1)
900 LET DHE = DH + 2 * T
910 LET DBE = DB + 2 * T
930 SMI = (DHE * DBI ^ 3 / 12) - (DH * DB ^ 3) / 12
960 ir = SQR(SMI / S)
970 LET R$ = "LA LONGUEUR INTERIEURE DE LA SECTION EST ="
980 LET OUTPUT = DH
990 GOTO 1000
1000 LET EM = (U * CL) / ir
1010 IF EM < 140 THEN 1040
1020 F = F/2
1030 GOTO 190
1040 \text{ FOR } J = 1 \text{ TO } 15
1050 IF ABS(EM - A(1, J))<10 THEN 1080
1060 NEXT J
1070 PRINT "ERREUR DE DONNEE"
1075 END
1080 \text{ F1} = \text{EM} - A(1, J)
1090 F2 = (A(IM, J+1) - A(IM, J)) / 10
1100 \text{ FI} = A(IM, J) + F1 + F2
1110 IF ABS(FI - F) <= E THEN 1140
1120 LET F = (FI + F) / 2
1130 GOTO 190
1140 PRINT R$, OUTPUT
1150 END
```

8 RESISTANCE DES MATERIAUX DE BASE

Source: www.almohandiss.com

258

CORRIGE DU SUJET 17

CORRIGE DE L'EXERCICE 1

On considère que la section en S est composée de trois rectangles de longueur 120 mm et 30 mm de largeur.

- Le centre de gravité de la section S est le point 0.

- Calcul des moments d'inertie:

$$I_{ys} = \sum I_{yi} + \sum S_i a^2$$

$$I_{zs} = \sum I_{zi} + \sum S_i b^2$$

$$I_{ys} = \frac{30 \times 120^3}{12} + 2 \times \frac{120 \times 30^3}{12} + 2 \times 120 \times 30 \times 75^2 = 4536 \times 10^4 \text{ mm}^4$$

$$I_{zs} = \frac{120 \times 30^3}{12} + 2 \times \frac{30 \times 120^3}{12} + 2 \times 120 \times 30 \times 45^2 = 2349 \times 10^4 \text{ mm}^4$$

$$I_{yzs} = 2(120 \times 30 \times 45 \times 75) = 2430 \times 10^4 \text{ mm}^4$$

Moments d'inertie principaux et leur orientation:

$$tg2\alpha_{0} = \frac{2I_{yz}}{I_{z} - I_{y}} = \frac{2 \times 2430}{2349 - 4536} \Longrightarrow 2\alpha_{0} = -65.77 \Longrightarrow \alpha_{0} = -32.9^{\circ}$$

$$I_{1,2} = \frac{I_{y} + I_{z}}{2} \pm \sqrt{\frac{(I_{y} - I_{z})^{2}}{4} + I_{yz}^{2}}$$

$$I_{1} = 60.9 \times 10^{6} \text{ mm}^{4}$$

$$I_{2} = 7.95 \times 10^{6} \text{ mm}^{4}$$

$$I_{3} = 4600 \text{ gravité de l'aire totale}$$

Calcul du centre de gravité de l'aire totale, composée d'une section en S et une section rectangulaire:

$$Y_G = 0$$

RESISTANCE DES MATERIAUX DE BASE 260

$$Z_{\rm G} = \frac{\sum z_i S_i}{\sum S_i} = \frac{105 \times 360 \times 30}{3 \times 120 \times 30 + 360 \times 30} = 52.5 \,\rm{mm}$$

Les moments centraux de la section totale:

$$I_{y} = \frac{360 \times 30^{3}}{12} + 4536 \times 10^{4} \times 360 \times 30 \times 52.5^{2} + 1080 \times 52.5^{2}$$

 $I_y = 105.7 \times 10^6 \text{ mm}^4$

$$I_z = \frac{30 \times 360^3}{12} + 2349 \times 10^4 = 140.1 \times 10^6 \text{ mm}^4$$
$$I_{zy} = 24.3 \times 10^6 \text{ mm}^4$$

Les moments principaux et centraux:

$$\mathrm{tg}2\alpha_0 = \frac{2 \times 2430}{140.1 - 105.7} \Longrightarrow \alpha_0 = +27.3^\circ$$

$$I_{1,2} = \frac{140.1 + 105.7}{2} \times 10^{6} \pm \sqrt{\left(\frac{140.1 - 105.7}{2}\right)^{2} + 24.3^{2}} \times 10^{6} \Rightarrow \frac{I_{1} = 152.7 \times 10^{6} \text{ mm}^{4}}{I_{2} = 93.1 \times 10^{6} \text{ mm}^{4}}$$

On trace le cercle de Mohr:

- Plus le diamètre du cercle de Mohr est petit, plus la section est uniforme, c.a.d que l'écart entre les moment d'inertie principaux diminue. Quand le cercle se réduit à un point les moments d'inerties sont invariant par rapport à n'importe quelle orientation, comme le cas d'une section carrée ou circulaire.

CORRIGE DE L'EXERCICE 2

- La poutre en arc: calcul des réactions

$$\Sigma F_{V} = 0 \Longrightarrow V_{A} + V_{B} = 40 \text{ kN}$$

Par symétrie:

$$V_A = V_B = 20 \text{ kN}$$

 $\sum M/Cg = 0 \Rightarrow 2V_A - 2 \text{ x } H_A = 2 \times 10$
 $\Rightarrow H_A = 10 \text{ KN}$

par symétrie aussi $H_B = H_A = 10 \text{ KN}$

-Diagrammes des efforts N , T et M : La poutre et la charge étant symétrique on étudie le tronçon AC: $$10\ensuremath{\,k\text{N/m}}$$

$$0 \le \theta \le 60$$

$$N(\theta) = -20 \cos^{2}\theta - 10 \sin\theta$$

$$N(0) = -20 kN , N(90) = -10 kN$$

$$T(\theta) = -10 \cos\theta(1 - 2 \sin\theta)$$

$$T(0) = -10, T(90) = 0 kN$$

$$T(\theta) = 0 \Rightarrow \theta = 30^{\circ} \text{ et } 90^{\circ}$$

$$M(\theta) = 20[1 - \cos^{2}\theta] - 20\sin\theta$$

$$M(0) = 0, M(90) = 0. , M_{max} = M(30) = -5 kN.m$$

On calcule des valeurs intermédiaires de N, T et M et on Trace les diagrammes:

*Il faut noter que le diagramme de l'effort tranchant est antisymétrique.

10

α

20

х

N

M

La poutre à double versants inclinés

Calcul des réactions:

$$\Sigma F_{V} = 0 \Longrightarrow V_{A} + V_{B} = 40 \text{ kN}$$

 $\Sigma M/Cg = 0 \Rightarrow 2V_A - H_A = 2 \times _{20}$

Par symétrie:

10

~

 \Rightarrow H_A = 20 KN

 $V_{A} = V_{B} = 20 \text{ kN}$

par symétrie aussi $H_B = H_A = 20$ KN

-Efforts N , T et M: Pour des raisons de symétrie on n'étudie que le tronçon AC:

$$0 \le x \le 2$$

$$N = (10 \sin\alpha)x - 20(\cos\alpha + \sin\alpha)$$

$$N(0) = -26.8$$

$$T(x) = 20(\cos\alpha + \sin\alpha) - (10\cos\alpha)x ,$$

$$T(0) = 8.9, T(2) = -8.9, T(x) = 0 \Rightarrow x = 1 m$$

$$M(x) = 20 x - (20tg\alpha)x - 5 x^{2}$$

$$M(0) = 0, M(2) = 0, M_{max} = M(1) = 5 \text{ KN.m}$$

On trace les diagrammes des efforts internes.

Comme le montre le tableau ci-dessous les efforts maximaux sont comparables, sauf pour l'effort normal qui est nettement supérieur (30%) dans la poutre à versants.

	N (kN)	T(kN)	M(kN.m)
Poutre en arc	20.0	10.0	5.00
Poutre à versants	26.8	8.90	5.00

RESISTANCE DES MATERIAUX DE BASE

CORRIGE DU SUJET 18

CORRIGE DE L'EXERCICE 1

On utilise la méthode d'intégrale directe pour déterminer l'équation de la déformée.

- Tronçon AB:

M(x) = M + Rx, M étant le moment à l'encastrement EI_1V_1 " = -M -Rx $EI_1V_1' = -Mx - R x^2/2 + C_1$ $EI_1V_1 = -Mx^2/2 - Rx^3/6 + C_1x + D_1$

- Tronçon BC

$$\begin{split} M(x) &= M + Rx - F(x-L) \\ EI_2V_2'' &= -M - Rx + F(x-L) \\ EI_2V_2' &= -Mx - Rx^2/2 + F(x-L)^2/2 + C_2 \\ EI_2V_2 &= -Mx^2/2 - Rx^3/6 + F(x-L)^3/6 + C_2x + D_2 \end{split}$$

Conditions aux limites:

 $EI_1V_1'(0) = 0 \Longrightarrow C_1 = 0$ $EI_1V_1(0) = 0 \Longrightarrow D_1 = 0$ $V_1'(L) = V_2'(L) \Rightarrow \frac{1}{EI_1} \left(-ML - R\frac{L^2}{2} \right) = \frac{1}{EI_2} \left(-ML - R\frac{L^2}{2} + C_2 \right)$ sachant que $I_1 = \frac{ab^3}{12}$ et $I_2 = \frac{\alpha^3 ab^3}{12} \Rightarrow \frac{I_2}{I_2} = \alpha^3$ d'où $-\alpha^{3}\left(ML + R\frac{L^{2}}{2}\right) + ML + R\frac{L^{2}}{2} = C_{2}$

$$\Rightarrow$$
C₂ = (1 - α^3)(ML + R L²/2)

Source: www.almohandiss.com

264

$$V_{1}(L) = V_{2}(L)$$

$$\Rightarrow \frac{1}{EI_{1}} \left(-M \frac{L^{2}}{2} - R \frac{L^{3}}{6} \right) = \frac{1}{EI_{2}} \left(-M \frac{L^{2}}{2} - R \frac{L^{3}}{6} + C_{2}L + D_{2} \right)$$

$$\Rightarrow D_{2} = -M \frac{L^{2}}{2} - R \frac{L^{3}}{3} + \alpha^{3}M \frac{L^{2}}{2} + \alpha^{3}R \frac{L^{3}}{3}$$

$$EI_{2}V_{2}(2L) = 0$$

$$\Rightarrow -M \frac{L^{2}}{2} - \frac{2}{3}RL^{3} - \frac{3}{2}\alpha^{3}ML^{2} - \frac{2}{3}\alpha^{3}RL^{3} + F \frac{L^{3}}{6} = 0$$

Equations de l'équilibre statique:

M = 2YL - FL

$$\mathbf{R} = \mathbf{F} - \mathbf{Y}$$

En remplaçant M et R dans l'équation (1), on obtient:

$$Y = \frac{5\alpha^3}{14\alpha^3 + 2}F$$

Y peut être mis sous la forme : Y = β F avec $\beta = \frac{5\alpha^3}{14\alpha^3 + 2}$

aux limites de $\alpha \Longrightarrow 0 < \beta < 5/14$

CORRIGE DE L'EXERCICE 2

La section étant symétrique, les axes x-x et y-y sont des axes principaux.

$$I_x = 2 \times 9075 + 2 \left[\frac{30 \times 1.3^3}{12} + 30 \times 1.3(15.65)^2 \right]$$
$$I_x = 3726.9 \text{ cm}^4$$
$$I_y = 2 \times 568 + 2 (1.3 \times 30^3/12 + 71 \times 3.4^2)$$
$$Iy = I_{\min} = 8627.5 \text{ cm}^4$$

On suppose que le flambement est élastique, et on utilise la formule d'Euler:

$$P_{\rm cr} = \frac{4\pi^2 \text{EI}_{\rm min}}{\text{L}^2}$$
$$P_{\rm cr} = \frac{4\pi^2 \times 2.1 \times 10^5 \times 8627.5 \times 10^4}{6100^2} = 19.22 \times 10^3 \text{KN}$$

RESISTANCE DES MATERIAUX DE BASE

CORRIGE DU SUJET 19

CORRIGE DE L'EXERCICE 1

Condition de la résistance:

$$\sigma = \frac{M_{max}Y}{I} \le [\sigma]$$

$$M_{max} = \frac{qL^2}{8} \text{ et } Y_{max} = \frac{h}{2}$$

$$\Rightarrow \frac{qL^2h}{16I} \le [\sigma] \Rightarrow L \le \sqrt{\frac{16[\sigma]I}{qh}}$$

$$L \le \sqrt{\frac{16 \times 140 \times 10^6 \times 1.8 \times 10^{-4}}{25 \times 10^3 \times 0.375}} = 6.56\text{m}$$

La condition de rigidité:

On démontre que la flèche maximale d'une poutre simplement appuyée et uniformément chargée est donnée par:

$$f_{max} = \frac{5qL^4}{384EI}$$

$$f_{max} \le [f] \Rightarrow \frac{5qL^4}{384EI} \le \frac{L}{400}$$

$$L \le \sqrt[3]{\frac{384EI}{400 \times 5q}} \Rightarrow L \le \sqrt[3]{\frac{384 \times 200 \times 10^9 \times 1.8 \times 10^{-4}}{400 \times 5 \times 25000}} = 6.52 \text{ m}$$

La condition de rigidité est légèrement prépondérante, la longueur maximale $L_{max} \le 6.5 \text{ m}$

CORRIGE DE L'EXERCICE 2

- Etude cinématique:

$$L = 19 \times 3 - 27 \times 2 - 3 = 0$$

Source: www.almohandiss.com

266

Solutions 267

Le système indéformable est isostatique

- Calcul des réactions:

$$\sum M_{/A} = 0 \Rightarrow 10 \times 3 + 20 \times 6 + 30 \times 9 = 4V_{K}$$
$$\Rightarrow V_{K} = 105kN$$
$$\sum F_{H} = 0 \Rightarrow H_{A} = 60kN$$
$$\sum F_{V} = 0 \Rightarrow V_{A} = -V_{K} = -105kN$$

- Calcul des efforts:

On utilise la méthode graphique de Cremona:

On effectue la procédure de la numérotation du treillis et on trace le diagramme des forces. On obtient ainsi les efforts dans les barres en mesurant graphiquement les distances entre les points. Le tableau ci-dessous récapitule les efforts dans toutes les barres du système.

Barres	1-7	3-8	4-11	5-14	6-14	6-15	6-12	6-9	7-8
Efforts	+30.0	+60.0	+22.5	0	-30.0	0	-22.5	-60	+55.0
Barres	7-9	8-10	9-10	10-11	10-12	11-13	12-13	13-14	13-15
Efforts	-55.0	-35.0	+25.0	+45.0	-45.0	+35.0	+15.0	+27.5	-27.5

Diagramme des forces

268 RESISTANCE DES MATERIAUX DE BASE

- Dimensionnement à la résistance en traction:

L'effort maximal de traction $N_{max} = 55 \text{ kN}$

$$\frac{N}{S} \le [\sigma_+] \Rightarrow \pi d^2 \ge \frac{4N}{[\sigma_+]} \Rightarrow d \ge 2\sqrt{\frac{N}{\pi[\sigma_+]}}$$
$$\Rightarrow d \ge 2\sqrt{\frac{55 \times 10^3}{20\pi}} = 59.2 \text{mm}$$

- vérification à la stabilité:

L'effort de compression maximal correspond à la barre la plus élancée avec:

$$N_{max} = -55 \text{ kN}$$
 et $L = 3.61 \text{ m}$
 $i_{min} = \frac{d}{4} = 14.8 \text{ mm}$
 $\lambda = \frac{\mu L}{i_{min}} = \frac{1 \times 3610}{14.8} = 244$

 λ est très grand (la barre est très élancée) et ne figure pas dans le tableau des coefficients ϕ . On choisit donc une valeur initiale de ϕ_0 égale à 0.5 et on refait les calculs avec:

$$d = 2\sqrt{\frac{N}{\varphi \pi[\sigma_+]}}$$

Le processus étant itératif, on converge vers la solution après 4 itérations:

ϕ_i	d	i	λ	φi'	$(\phi_i + \phi_i')/2$
0.50	118.	29.6	122	0.22	0.36
0.36	140.	34.8	101	0.31	0.33
0.33	146	36.4	99	0.31	0.32
0.32	148	37.0	98	0.32	

On prend d = 150 mm.

CORRIGE DU SUJET 20

CORRIGE DE L'EXERCICE 1

Détermination des efforts au niveau d'une section passant par le point A:

$$N = 0$$

T = 40 kN
M = 40 × 0.5 = 20 kNm

Calcul des contraintes en A:

$$\sigma = \frac{My}{I} = \frac{20 \times 10^6 \times \left(\frac{160}{2} - 40\right)}{\frac{100 \times 160^3}{12}} = 23.44 \text{ N/mm}^2$$
$$\tau = \frac{\text{TS}^*}{\text{Ib}} = \frac{40 \times 10^3 \times 100 \times 40 \times (80 - 20)}{\frac{100 \times 160^3}{12} \times 100} = 2.81 \text{ N/mm'}$$

L'état de contrainte plan en A est défini par:

$$\sigma_{\rm x} = 23.44 \,\mathrm{N}\,/\,\mathrm{mm^2}$$

$$\sigma_{\rm y}=0$$

$$\tau_{\rm xy} = 2.81 {\rm N} / {\rm mm^2}$$

Calcul des contraintes principales et leur orientation:

$$\sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\frac{(\sigma_x - \sigma_y)^2}{4}} + \tau_{xy}^2 = \frac{23.44 + 0}{2} \pm \sqrt{\frac{(23.44 - 0)^2}{4}} + 2.81^2$$

$$\sigma_1 = 23.69 \text{ N/mm}^2$$

$$\sigma_2 = -0.25 \text{ N/mm}^2$$

$$tg2\alpha_0 = \frac{2\tau_{xy}}{\sigma_x - \sigma_y} = \frac{2 \times 2.81}{23.44 - 0} \Rightarrow \alpha_0 = 6.74^\circ$$

270 RESISTANCE DES MATERIAUX DE BASE

Calcul de la contraintes tangentielle maximale

$$\tau_{\max} = \frac{\sigma_1 - \sigma_2}{2} = \frac{23.69 + 0.25}{2} = 11.97 \,\text{N} \,/\,\text{mm}^2$$
$$\text{tg} 2\alpha_{00} = -\frac{\sigma_x - \sigma_y}{2\tau_{xy}} = -\frac{23.44}{2 \times 2.81} = -38.25^\circ$$

CORRIGE DE L'EXERCICE 2

Equation d'équilibre:

 $M_A - M_C = M$

La condition de compatibilité est donnée par:

$$\phi_{CA} = \phi_{BA} + \phi_{CB} = 0$$

$$\Rightarrow \frac{M_A L_{BA}}{GI_{p1}} + \frac{(M_A - M)L_{AC}}{GI_{p2}} = 0$$

$$\frac{M_A \frac{3L}{4}}{G\frac{\pi D^4}{32}} + \frac{(M_A - M)\frac{L}{4}}{G\frac{\pi (D/2)^4}{32}} = 0$$

$$\Rightarrow 3M_A + 16(M_A - M) = 0$$

d'où

$$M_{\rm C} = \frac{3}{19} M$$

et de l'équation (1) on tire $M_A = \frac{16}{19} M$

Les contraintes tangentielles sont données par: - tronçon AB:

$$\tau_{A \max} = \frac{M_A \times D/2}{I_{p1}} = \frac{\frac{16}{19}M \times \frac{D}{2}}{\frac{\pi D^4}{32}} = \frac{256}{19}\frac{M}{\pi D^3}$$

- tronçon BC:

$$\tau_{\rm Bmax} = \frac{M_{\rm B} \times D/4}{I_{\rm p2}} = \frac{\frac{16}{19} M \times \frac{D}{4}}{\frac{\pi (D/2)^4}{32}} = \frac{384}{19} \frac{M}{\pi D^3}$$

Donc la contrainte tangentielle maximale est atteinte dans le tronçon BC:

$$\tau_{\text{max}} = \tau_{\text{Bmax}} = \frac{384}{19} \frac{\text{M}}{\pi \text{D}^3}$$
$$\Rightarrow \text{M} = \tau_{\text{max}} \times \pi \text{D}^3 \frac{19}{384}$$
$$\Rightarrow \text{M} = 40\pi (20)^3 \frac{19}{384} = 49.74 \times 10^3 \text{ N.mm}$$

$$\varphi_{\rm B} = \frac{M_{\rm A}L_{\rm AB}}{GI_{\rm p1}} = \frac{(16/19) \times 49.74 \times 10^3 \times 750}{75 \times 10^3 \times \pi \times 20^4 / 32} = 27 \times 10^{-3} \,\mathrm{rd}$$

CORRIGE DE L'EXERCICE 3

Le noyau central est le lieu géométrique entourant le centre de gravité pour lequel une force P appliquée en son intérieur provoque en tous les points de la section transversale des contraintes d'un même signe.

L'intérêt pratique de la notion du noyau central est de savoir la valeur maximale de l'excentricité pour laquelle les contraintes de traction ou de compression sont absentes dans une section qui résiste mal à la traction ou à la compression respectivement. Comme par exemple pour éviter les contraintes de compression dans une section en maçonnerie en brique ou pour le cas d'une semelle de fondation supportant la charge d'une colonne excentrée.

272 RESISTANCE DES MATERIAUX DE BASE

CORRIGE DU SUJET 21

CORRIGE DE L'EXERCICE 1

- Calcul des efforts:

On utilise la méthode graphique de Cremona:

On effectue la procédure de la numérotation du treillis et on trace le diagramme des forces. Les efforts dans les barres sont obtenus en mesurant graphiquement les distances entre les points. Le tableau ci-dessous récapitule les efforts dans toutes les barres du système.

Tableau des efforts

Barres	Efforts (kN)
AB 1-7	+ 619
BC 2-10	+ 495
CD 3-12	+370
DE 4-14	+ 245
EF 5-14	- 245
GH 5-11	- 375
FG 5-13	- 245

Barres	Efforts (kN)
HI 5-9	- 495
BI 9-7	- 245
BH 10-9	+ 120
СН 11-10	- 190
CG 12-11	+ 60
GD 12-13	- 150
DF 13-14	0

Diagramme des forces

Dimensionnement

Dimensionnement à la stabilité:

La barre la plus sollicitée en compression est H_{I} avec N = -495 kN et L = 2.062 m

La barre la plus élancée est B_I avec N = -245 kN et L = 4.03 m

274 RESISTANCE DES MATERIAUX DE BASE

On choisit la barre B_I pour le dimensionnement et on vérifie le reste. On utilise la méthode itérative avec une valeur initiale de $\phi_0 = 0.5$

$$d = 2\sqrt{\frac{N}{\varphi\pi[\sigma_{-}]}} = 2\sqrt{\frac{245 \times 10^{3}}{0.5\pi \times 120}} = 72.1 \text{mm}$$

pour une section circulaire $\dot{i}_{\min} = \frac{d}{4}$

$$\lambda = \frac{4\mu L}{d} = \frac{4 \times 4031}{72.1} = 223.6$$

 λ est très grand (la barre est très élancée) et ne figure pas dans le tableau des coefficients φ . On choisit donc une valeur initiale de φ_0 égale à 0.3 et on refait les calculs avec:

Le processus étant itératif, on converge vers la solution après 3 itérations:

φi	d	λ	φi'	$(\varphi_i + \varphi_i')/2$
0.30	93.03	173.2	0.26	0.28
0.28	96.35	167.3	0.268	0.274
0.274	97.4	165.5	0.273	

On prend<u>d = 100 mm</u>

Vérifions la stabilité de la barre HI.

$$\lambda = \frac{4\mu L}{d} = \frac{4 \times 2062}{100} = 82.48 \implies \varphi = 0.735$$
$$\frac{N}{S} = \frac{4 \times 495 \times 10^3}{\pi (100)^2} = 63N / mm^2 < \varphi[\sigma_-] = 88.2N / mm^2$$
 la stabilité est

vérifiée.

- Vérification à la résistance en traction:

L'effort maximal de traction $N_{max} = 619 \text{ kN}$

$$\sigma_{\text{max}}^{+} = \frac{N}{S} = \frac{4 \times 619 \times 10^{3}}{\pi (100)^{2}} = 78.8 < [\sigma_{+}] = 120 \text{ N/mm}^{2}$$
 la résistance est

vérifiée.

Le critère de stabilité est prépondérant par rapport à celui de la résistance car la dimension des barres calculée d'après le critère de stabilité vérifie largement la condition de résistance.

Pour réduire la dimension de la section, il suffit de diminuer la longueur de flambement de la barre BI en ajoutant une barre entre le noeud A et le milieu de la barre BI, par exemple.

18 kN

CORRIGE DE L'EXERCICE 2

Calcul de la rotation de l'appui A en utilisant la méthode des poutre fictive.

On calculera la rotation de chaque charge extérieure séparément, ensuite on superposera les effets.

Sous la charge concentrée:

L'effort tranchant fictif en A:

$$\sum M_{/B} = 0 \Longrightarrow V_A = T_A = \frac{0.67F_1 + 1.67F_2}{3} = 8kNm^2$$

Sous l'effet du moment concentré:

 F_1

12 kNm

р

L'effort tranchant fictif en A:

$$\sum M_{/B} = 0 \Rightarrow V_A = T_A = \frac{2.33F_1 + 1.33F_2}{3} = -2kNm \text{ Ainsi on obtient}$$

l'effort tranchant total:

$$T_A = 8 - 2 = 6 \text{ kN}.\text{m}^2$$

d'où

$$\theta_{\rm A} = \frac{6}{\rm EI} = \frac{6}{120} = 0.05 \,\mathrm{rd}$$

276 RESISTANCE DES MATERIAUX DE BASE

CORRIGE DU SUJET 22

Calcul des réactions:

$$\sum F_{\rm V} = 0 \Longrightarrow V_{\rm A} + V_{\rm B} = 80 \tag{1}$$

$$\sum F_{\rm H} = 0 \Longrightarrow H_{\rm A} - H_{\rm B} = 0 \tag{2}$$

$$\sum M_{/A} = 0 \Longrightarrow 6V_B - 2H_B = 80 \times 4$$
(3)

$$\sum M_{/Cdroite} = 0 \Longrightarrow 4V_{B} - 4H_{B} = 80 \times 2$$
⁽⁴⁾

de (3) et (4)
$$\Rightarrow$$
 V_B = 60kN et H_B = 20kN

et de (1) et (2) \Rightarrow V_A = 20kN et H_A = 20kN

Diagramme des efforts internes:

Tronçon AC $0 \le \theta \le 90^{\circ}$

 $N = -20 (\sin \theta + \cos \theta)$ $T = 20 (\sin \theta - \cos \theta)$ $M = 40 (1 - \cos \theta - \sin \theta)$

Pour le tracé des diagrammes , on calcul M, N et T aux niveaux des sections intermédiaires.

θ (en °)	0	30	45	60	75	90
Ν	-20.0	-27.32	-28.28	-27.32	-24.50	-20.0
Т	-20.0	-7.32	0	7.32	14.14	20.0
М	0	-14.64	-16.57	-14.64	-9.0	0

Tronçon BD $0 \le \theta \le 60^{\circ}$

 $N = -20 \sin \theta - 60 \cos \theta$

 $T = -60 \sin\theta + 20 \cos\theta$

 $M=240 (1 - \cos\theta) - 80 \sin\theta$

θ (en °)	0	30	45	60
Ν	-60.0	-61.96	-56.60	-47.30
Т	20.0	-12.68	-28.28	-42.0
М	0	-7.85	13.73	+50.72

$$T(\theta) = 0 \Rightarrow -60 \sin\theta + 20 \cos\theta = 0 \Rightarrow tg\theta = 20/60 \Rightarrow \theta = 18.43^{\circ}$$

 $M_{max} = M(18.43) = -13 \text{ kN.m}$

Tronçon DC $60^\circ \le \theta \le 90^\circ$

 $N = -20 \sin \theta + 60 \cos \theta$

 $T = 20 \sin\theta + 20 \cos\theta$

 $M=80 (1 + \cos\theta - \sin\theta)$

θ (en °)	60	75	90
Ν	-7.32	-14.14	-20.0
Т	27.32	-24.50	20.0
М	50.72	-23.43	0

On note que $M_{max} = +50.7 \text{ kN.m}$ et $N_{max} = -47.3 \text{ kN}$

278 RESISTANCE DES MATERIAUX DE BASE

Tracé des diagrammes

Vérification à la résistance:

Déterminons les caractéristiques géométriques de la section droite

 $Y_G = 0$ (Z axe de symétrie)

$$Z_{\rm G} = \frac{2[0.5 \times 10 \times 200 \times 0.67 \times 200] + 20 \times 200 \times 100 - 0.25\pi \times 20^2 \times 100}{0.5(40 + 20) \times 200 - 0.25\pi \times 20^2} = 111.72 \,\rm{mm}$$

Calcul du moment d'inertie / à l'axe central yyG

$$I_{yG} = I_1 + 2I_2 - I_3$$

$$I_{yG} = \frac{20 \times 200^2}{12} + 20 \times 200 \times (11.72)^2 + 2 \left[\frac{10 \times 200^3}{36} + \frac{1}{2} 10 \times 200 \left(\frac{400}{3} - 11.72 \right)^2 \right]$$
$$- \left[\frac{\pi 20^4}{64} + \frac{\pi 20^2}{4} (11.72)^2 \right] = 19.21 \times 10^6 \text{ mm}^4$$
$$S = \frac{40 + 20}{2} \times 200 - \frac{\pi \times 20^2}{4} = 5685.8 \text{mm}^2$$

Il s'agit d'une flexion composée:

$$M = 50.72 \text{ kN.m}$$

 $N = -47.3 \text{ kN}$

La section étant asymétrique et les contraintes admissible de traction et de compression sont différentes, on doit donc vérifier les deux conditions suivantes:

$$\sigma_{max} \leq [\sigma_+]$$
 et $\sigma_{min} \leq [\sigma_-]$

avec

$$\sigma_{\max,\min} = \frac{N}{S} \pm \left| \frac{M_y}{I_y} z_{\max} \right|$$

Le moment fléchissant dans ce cas tend les fibres inférieures de la section, la contrainte maximale est alors:

$$\sigma_{\max} = \frac{-47.3 \times 10^3}{5685.8} + \frac{50.72 \times 10^6 \times 111.72}{19.21 \times 10^6} = 286.7 \,\text{N} \,/\,\text{mm}^2 > [\sigma_+] = 120 \,\text{N} \,/\,\text{mm}^2$$

La résistance n'est pas vérifiée, on calcule, cependant, la contrainte minimale :

$$\left|\sigma_{\min}\right| = \left|\frac{-47.3 \times 10^{3}}{5685.8} - \frac{50.72 \times 10^{6} \times (200 - 111.72)}{19.21 \times 10^{6}}\right| = 241.4 \,\mathrm{N} \,/\,\mathrm{mm^{2}} > [\sigma_{-}] = 80 \,\mathrm{N} \,/\,\mathrm{mm^{2}}$$

BIBLIOGRAPHIE

- [1] Aleinik L. et Durler J. RESISTANCE DES MATERIAUX cours de base, Edition Bibliotheque de l'ingenieur 1973.
- [2] Anissimov A., Djillali-Berkane Z. et Strakhov V., FLAMBAGE-SYSTEMES ISOSTATIQUES DE BARRES, O.P.U 04-1987.
- [3] Ashby R. J. et Chilver A. H., PROBLEMS IN ENGINEERING STRUCTURES, édition E.A 1958.
- [4] Belluzi O., SCIENZA DELLE CONSTRUZIONI Tome 1, édition Zanichelli Bologna 1977.
- [5] Brown E. H., STRUCTURAL ANALYSIS Tome 1, Edition Longmans 1967.
- [6] Coates R. C., Coutie M. G. et Kong F. K., STRUCTURAL ANALYSIS, 2eme édition 1980, VNR Ltd.
- [7] Decelle A. F., et Legendre D., MECANIQUE APPLIQUEE AU GENIE CIVIL, Editions Eyrolles 1983.
- [8] Doberscu C. A., QUELQUES CHAPITRES DE RESISTANCE DES MATERIAUX, tome 1,

O.P.U 04-91

- [9] Gere J. M. and S. P. Timoshenko, MECHANICS OF MATERIALS, 2^{eme} édition, Brooks/Cole Engineering 1984.
- [10] Gordon J. E., STRUCTURES OR WHY THINGS DON'T FALL DOWN, Penguin Books 1978.
- [11] Jalil W. A. et Ader P., CALCUL PRATIQUE DES STRUCTURES, 4eme édition, Editions Eyrolles 1985.
- [12] Mallows D. F. et Pickering W. J., STRESS ANALYSIS PROBLEMS IN S.I. UNITS, Pergamon Press 1972.
- [14] Mirolioubov I. et al., RESISTANCE DES MATERIAUX manuel de résolution de problèmes, 4eme édition 1977, Edition MIR Moscou.
Source: www.almohandiss.com

BIBLIOGRAPHIE

- [15] Montagner R., COURS DE RESISTANCE DES MATERIAUX, 12^{eme} edition 1988, Editions Eyrolles.
- [16] Muvdi B. B. and McNabb J. W., ENGINEERING MECHANICS OF MATERIALS, Macmillan Publishing Company 1984.
- [17] Nofel M., Warda M, et Latouf M., RESISTANCE DES MATERIAUX Tome 1,2, O.P.U 04-91.
- [18] Pissarenko G., Yakovlev A., at Matveev v., AIDE MEMOIRE DE RESISTANCE DES MATERIAUX, Editions de Moscou 1979.
- [19] Young B. W., ESSENTIAL SOLID MECHANICS, Theory, worked examples and problems, Gresham Press 1976.
- [20] Zedira H. et Lahbari N., RESISTANCE DES MATERIAUX Tome 1, O.P.U Collection le cours de génie civil, 06-1990.

Source: www.almohandiss.com

Source: www.almohandiss.com

Louvrage

Faisant partie de la collection que le GECOTEC a décidé de produire avec le concours de consultants de compétence établie, cet ouvrage comporte les notions fondamentales de la résistance des matériaux.

L'enseignement de cette matière, comme en témoignent la plupart des programmes et supports de cours, traitent surtout des techniques de calcul de résistance, de rigidité ou de stabilité des éléments des structures au détriment d'autres aspects aussi important comme l'optimisation et la conception. La résistance des matériaux est réduite donc à l'enseignement des méthodes de calcul de structures au moment où la majorité des étudiants, techniciens et ingénieurs utilisent des logiciels de calcul pour l'analyse des structures. Cet ouvrage se distingue par une présentation pragmatique du sujet, qui accentue l'aspect pratique de chaque notion en mettant en évidence ses usages dans la conception des éléments et des structures. L'ouvrage comporte quatorze chapitres englobant la plupart des aspects de la résistance des matériaux tels que les caractéristiques géométriques des formes, les efforts internes, les états de contraintes et de déformations, les critères de résistance, calcul à la résistance et à la stabilité et enfin les portiques et poutres hyperstatiques. Chaque chapitre contient un résumé consistant du cours empli d'illustrations et d'applications suivi d'une série d'exercices de degré de difficulté variée. Des sujets d'examens terminent cet ouvrage avec des propositions de solutions détaillées.

auteur

- Ingénieur en génie civil de l'école nationale polytechnique d'Alger
- Ph.D en dynamique des structure et génie sismique de l'Université de Bristol (G.B)
- Professeur d'enseignement supérieur et directeur de recherche

M. Bourahla cumule plus d'une quinzaine d'année d'enseignement en graduation et postgraduation en génie civil et d'encadrement de projets de fin d'études, de mémoires de Magister et de thèses de doctorat. Chef de plusieurs projets de recherches dans le domaine expérimental et analytique de la dynamique des structures et génie sismique. Il est auteur d'un grand nombre de publications et lauréat du prix S. T. Shieh 2003 offert par L'Institution of Civil Engineers, London.

L'éditeur-

Le Groupement Economique de COntrôle TEchnique de la Construction, par abréviation "G.E.CO.TE.C", est composé d'entreprises publiques de Contrôle Technique de la Construction (CTC). Il a été créé en 1994 dans le cadre d'une stratégie commune visant principalement à développer, protéger et renforcer la mission de contrôle technique dans le nouveau contexte de l'économie de marché.

Dans le domaine de la formation et de la diffusion de l'information scientifique et technique, l'action du GECOTEC est marquée par :

- l'organisation de sessions de formation orientées vers l'actualisation et l'amélioration des connaissances, de débats, séminaires, conférences et journées d'études au profit des cadres techniques et des gestionnaires des CTC et de leurs partenaires traditionnels;
- l'édition d'un bulletin d'information technique et scientifique ;
- une plus grande ouverture sur l'Université ;
- un encouragement appuyé à la production scientifique et technique,

L'édition du présent ouvrage s'inscrit essentiellement dans le cadre de ces objectifs.

Source: www.almohandiss.com